绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

楼主: 与你同行
打印 上一主题 下一主题

初中数学教材培训

[复制链接]
85#
 楼主| 发表于 2008-11-12 07:33:00 | 只看该作者
一、教科书内容和课程学习目标  (一)本章知识结构框图
  1.本章知识的内在结构如下图所示:
  
  2.本章知识的展开顺序如下图所示:
   
  (二)教科书内容
  本章主要内容包括算术平方根、平方根、立方根以及实数的有关概念和运算.本章的重点是算术平方根和平方根的概念和求法,本章难点是平方根和实数的概念.
  教科书的第一节是平方根,本节先研究算术平方根,再研究平方根。教科书首先创设一个问题情景,抽象出这个情景中的数学问题,即已知正方形的面积求边长的问题,这是一个典型的求算术平方根的问题,这与学生以前熟悉的已知边长求面积是一个互逆的过程。通过对这类问题的探讨,引出算术平方根,给出算术平方根的概念和它的符号表示,这时教科书所涉及到的被开方数都是完全平方数.接下去,教科书设置一个“探究”栏目,要求学生将两个面积为1的小正方形拼成一个面积为2的大正方形,并求出这个大正方形的边长。这也是一个已知正方形的面积求它的边长的问题,由于这个大正方形的面积为2,根据前面学过的算术平方根的概念和表示方法,可以求出这个大正方形的边长是,这样教科书就引进了用根号形式表示的无理数(不出现无理数的概念),这是教科书第一次出现这样的数.另外,通过学生将两个面积为1的小正方形拼成一个面积为2的大正方形的活动,也使学生感受到无理数是从现实世界中抽象出来的,是一种不同于有理数的数.出现以后,一个很自然的问题,就是要讨论的大小。教科书采用夹逼的方法,利用不足近似和剩余近似来估计的大小,通过一步一步的估计,得到越来越精确的的近似值,进而指出是一个无限不循环小数的事实,同时指出等也是无限不循环小数等,这就为后面认识无理数打下基础。会使用计算器求数的算术平方根是本章的一个教学要求,教科书通过一个例题,介绍了使用计算器求算术平方根的方法,并利用计算器进一步说明了是无限不循环小数这个结论,加深学生对无理数的认识。用有理数估计无理数的大小,也是学习本章应该注意的一个问题,教科书结合一个实际例子介绍了用有理数估计无理数的常用方法.到此为止,教科书讨论了有关算术平方根的内容,包括算术平方根的概念、求法,无限不循环小数以及用有理数估计无理数等内容。接下去,教科书设置一个“思考”栏目,展开了对平方根的讨论。在这个“思考”栏目中,要求学生算出平方等于9的数,通过对这个问题的探讨,找到解决问题的方法,利用这种方法进一步求出平方等于1,16,36…的数,由此归纳给出平方根的概念,进而引出开平方运算。开平方运算与平方运算是互逆运算,教科书通过举例分析了这两种运算的互逆过程,并用图示进一步说明。最后,教科书结合具体例子,通过具体计算一些数的平方根,探讨了数的平方根的特征,并通过一个“归纳”栏目,要求学生自己归纳给出“正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根”等这些数的平方根的特征.
  教科书第二节是立方根。对于立方根,教科书采用了类似平方根的方法进行讨论.首先设置一个问题情景,从这个问题情景中抽象出数学问题,就是已知立方体的体积求它边长的问题,这是一个典型的求数的立方根的问题。这样教科书就从这个典型问题引出立方根的概念和开立方运算。接下去,类比着平方运算与开平方运算的互逆关系,探讨了立方运算与开立方运算的互逆关系,并通过一个“探究”栏目,学习求数的立方根的方法。在这个“探究”栏目中,要求学生分别计算一些正数、负数和0的立方根,通过这些计算,一方面让学生学习利用立方与开立方的互逆关系求立方根的方法,另一方面也为下面探讨数的立方根的特征作准备。紧接着这个“探究”栏目,教科书设置了一个“归纳”栏目,由学生归纳给出“正数的立方根是正数,负数的立方根是负数,0的立方根是0”等这些数的立方根的特征.最后,教科书介绍了立方根的符号表示,并利用这种符号表示探讨了立方根的一条性质()。
  学习了平方根、立方根以及开方运算后,教科书在第三节安排了实数。本节首先设置一个“探究”拦目,要求学生将一些有理数转化为小数的形式,分析这些小数的共同特点,通过分析发现有理数都可以化成有限小数或无限循环小数的形式,然后指出反过来的结论也成立,即任何有限小数和无限循环小数都是有理数,这样教科书就将有理数与有限小数和无限循环小数统一起来。在此基础上可以指出,像等只能化成无限不循环小数的数就是无理数,从而引出无理数的概念。教科书采用这种与有理数对照的方法引出无理数,有利于揭示有理数和无理数的本质区别,也有助于学生理解“有理数和无理数统称实数”这个构造性定义。接下去,教科书根据不同的标准对实数进行分类,揭示实数的内部结构.随着无理数的引入,实数概念的出现,数的范围由有理数扩充到实数,在这个扩充过程中,既体现了概念、运算等的一致性,又体现了它们的发展变化。教科书通过几方面的例子说明了这种一致性和发展变化。首先,教科书通过探究在数轴上画出表示的点,说明了无理数也可以用数轴上的点来表示,并指出当数由有理数扩充到实数后,直线上的点与实数就是一一对应的、平面上的点与有序实数对也是一一对应的;接下去,教科书通过设置思考问题,让学生体会,在有理数范围内成立的一些概念(如绝对值、相反数等)在实数范围内仍然成立;最后,教科书结合具体例子说明,有理数的运算(如加、减、乘、除、乘方运算等),以及运算律、运算性质(如交换律、分配律、结合律等)在实数范围内仍然成立,并且可以进行新的运算(如正数和0可以进行开平方运算)等.
  与原教科书相比,本章内容在原教科书“数的开方”一章的基础上,适当增加了有关实数运算的内容(实数的运算在本套书“二次根式”一章继续学习),说明了平面内点与有序实数对一一对应以及在实数范围内的平移变换等;从内容安排上看,改变原教科书先讲平方根,将算术平方根作为平方根一种特例的做法,而是从实际出发,先讲算术平方根,再扩大到平方根,加强了与实际的联系;在教学目标方面,强调所有学生都应会使用计算器进行开方运算,加强对估算的要求等。
  (三)课程学习目标
  1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根;
  2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根;
  3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大到实数后,一些概念、运算等的一致性及其发展变化;
  4.能用有理数估计一个无理数的大致范围.
回复

使用道具 举报

86#
 楼主| 发表于 2008-11-12 07:33:00 | 只看该作者
 二、本章编写特点

  (一)加强与实际的联系

  本章内容与实际的联系是非常密切的.例如,无理数是从现实世界中抽象出来的一种数,开平方运算和开立方运算也是实际中经常用到的两种运算,用有理数估计无理数的大小在现实生活中经常遇到等等.因此,本章内容在编写时注意联系实际,对于一些重要的概念和运算紧密结合实际生活展开,例如算数平方根是从已知正方形的面积求它边长、立方根是从已知立方体的体积求它边长等典型的实际问题引出的,再如用有理数估计无理数的大小也是紧密结合实际进行的.编写时,将本章内容与实际紧密联系起来,可以使学生在解决实际问题的过程中,认识实数的有关概念和运算,更好地体会数的扩充过程中表现出来的概念、运算等的一致性和发展变化.

  (二)加强知识间的纵向联系

  本章内容属于“数与代数”这个领域,有关数的内容,学生在七年级上册已经系统学过有理数,对有理数的概念和运算等有了较深刻的认识,本章是在有理数的基础上学习实数的初步知识,由于数的扩充的一致性,本章很多内容是有理数相关内容的延续和推广,因此,本章编写时,注意加强知识间的相互联系。例如,对于绝对值和相反数的概念,实数的运算法则和运算性质,平方与开平方、立方与开立方的互为逆运算关系等都是在有理数的基础上展开的。另外,本章前两节 “平方根”“立方根”在内容上基本是平行的,因此,编写“立方根”这节时,充分利用了类比的方法,例如类比平方根的概念的引入方式给出立方根的概念,类比开平方运算给出开立方运算,类比平方与开平方运算的互逆关系研究立方与开立方运算的互逆关系等。这样的编写方法,有助于加强知识间的相互联系,通过类比旧知识学习新知识,使学生的学习形成正迁移.

  (三)留给学生探索交流的空间

  根据本章内容的特点,对于一些重要的概念和结论,编写时注意了让学生通过观察、思考、讨论等探究活动归纳得出结论的过程.例如,对于平方根概念的引入,教科书首先通过一个问题情景,引出已知面积求边长的问题,接下去又让学生通过填表的方式,计算几个不同面积的正方形的边长,使学生感受到这些问题与以前学过的已知边长求面积的问题是一个相反的过程,并由此指出,这些问题抽象成数学问题就是已知一个正数的平方,求这个正数是几的问题,并在此基础上给出算术平方根的概念,这样就让学生通过一些具体活动,在对算术平方根有些感性认识的基础上归纳给出这个概念.再比如,在讨论数的立方根的特征时,教材首先设置“探究”栏目,在栏目中以填空的方式让学生计算一些具体的正数、0、负数的立方根,寻找它们各自的特点,通过学生讨论交流等活动,归纳得出“正数的立方根是正数,0的立方根是0,负数的立方根是负数”的结论,这样就让学生通过探究活动经历了一个由特殊到一般的认识过程,在探究活动的过程中发展思维能力,有效改变学生的学习方式.

回复

使用道具 举报

87#
 楼主| 发表于 2008-11-12 07:34:00 | 只看该作者
 三、几个值得关注的问题

  (一)把握教学要求

  本册书对于某些内容采用提前渗透、逐步提高的编写方式.例如,对于平面直角坐标系,在第6章“平面直角坐标系”中研究了点与有序数对的对应关系,其中点的坐标都是整数,在本章将把点的坐标由整数的情形扩展到实数范围,并建立点与有序实数对的一一对应关系,为后续学习函数的图象、函数与方程和不等式的关系等打下基础.

  对于平移变换,教课书在第5章“相交线与平行线”中安排了一节“平移”,探讨得出“平移前后的两个图形的对应点的连线平行且相等”等平移变换的基本性质,又在第6章“平面直角坐标系”中安排了用坐标方法研究平移的内容,从坐标的角度进一步认识平移变换,这时平移中遇到的坐标都是整数的情况.在本章,由于建立了点与有序实数对的一一对应关系,本章又在实数范围内研究平移的内容,为后续学习利用平移变换探索几何性质以及综合运用几种变换(平移、旋转、轴对称、相似等)进行图案设计等打下基础.

  本章还通过一个例题学习了实数的简单运算,安排这个例题的目的是要说明有理数的运算法则和运算性质等在实数范围内仍然成立,关于实数的运算在后面的“二次根式”一章中还要继续研究.

  另外,本章也提前渗透了一些数学思想和方法.比如,本章的数学活动1,涉及到勾股定理的内容,让学生利用勾股定理,在数轴上画出表示几个无理数的点.这里只是结合无理数渗透了勾股定理,关于勾股定理以后还要进行专门的研究.综上所述,本章教学时要注意把握教学要求,以一种发展的、动态的观点看待教学要求,不能要求一次到位.

  (二)发挥计算器的作用,加强估算能力的培养

  使用计算器进行复杂运算,可以使学习的重点更好地集中到理解数学的本质上来,估算是一种具有实际应用价值的运算能力.提倡使用计算器进行复杂运算,加强估算,综合运用笔算、计算器和估算等方式培养学生的运算能力,是本章的一个教学要求.为了达到这个教学目的,本章专门安排了利用计算器求数的平方根和立方根以及利用有理数估计无理数的大致范围等内容.因此,教学中可以结合具体内容,综合利用各种途径培养学生的运算能力.

  (三)重视人文教育

  无理数的出现引发了数学史上的第一次危机,是数学发展史上的重要里程碑。无理数的发现经历了一个漫长而艰苦的过程,在发现无理数的过程中,体现了人类为追求真理而不懈努力的精神。因此教学时,可以结合无理数的发现,挖掘数学知识的文化内涵,使学生感受丰富的数学文化的熏陶,开阔他们的眼界,增长他们的见识。

  另外,本章编写时注意加强与实际的联系,在选择素材时,力求选取学生感兴趣的和富有时代气息的实际问题。例如,本章选择了我国神舟5号载人飞船取得圆满成功的素材,通过这个素材可以使学生从数学的角度更多地了解航天知识,培养学生的民族自豪感和爱国主义情操,激励学生更加努力地学习,这样使学生在学习数学的同时,也得到了人文方面的教育。
回复

使用道具 举报

88#
发表于 2008-11-14 07:29:00 | 只看该作者

初中数学培训手册之十九

第十四章“一次函数”简介

课程教材研究所  田载今



  一、教科书内容和课程学习目标



(一)教科书内容



本章的主要内容包括:变量与函数的概念,函数的三种表示法,正比例函数和一次函数的概念、图象、性质和应用举例,用函数观点再认识一元一次方程、一元一次不等式和二元一次方程组.



全章共包括三节:



14.1  变量与函数



14.2  一次函数



14.3  用函数观点看方程(组)与不等式



  其中,14.1 节是全章的基础部分,14.2节是全章的重点内容,14.3节是引申的内容.



函数的概念是数学中极为重要的基本概念,它的抽象性较强,接受并理解它有一定难度,这也是本章的难点.



变化与对应的思想体现在函数概念之中,用运动变化的眼光,以函数为工具,从数量关系和图象两方面动态地分析问题,是本章学习的特点.




回复

使用道具 举报

89#
发表于 2008-11-14 07:30:00 | 只看该作者
(二)本章知识结构框图







(三)课程学习目标

本章内容的设计与编写以下列目标为出发点:

1.以探索实际问题中的数量关系和变化规律为背景,经历“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型;

2.结合实例,了解常量、变量和函数的概念,体会“变化与对应”的思想,了解函数的三种表示方法(列表法、解析式法和图象法),能利用图象数形结合地分析简单的函数关系;

3.理解正比例函数和一次函数的概念,会画它们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决简单实际问题;

4.通过讨论一次函数与方程(组)及不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程(组)及不等式等内容的认识,构建和发展相互联系的知识体系.


(四)课时安排


本章教学时间约需15课时,具体分配如下(仅供参考):

14.1 变量与函数
5课时


14.2 一次函数
5课时


14.3 用函数观点看方程(组)与不等式

3课时


数学活动

小结
2课时

回复

使用道具 举报

90#
发表于 2008-11-14 07:30:00 | 只看该作者
二、本章的编写特点



(一)反映函数概念的实际背景,渗透“变化与对应”的思想



在建立和运用函数这种数学模型的过程之中,“变化与对应”的思想是重要的基础,所谓变化与对应的思想包括两个基本意思:



1.世界是变化的,客观事物中存在大量的变量;



2.在同一个变化过程中,变量之间不是孤立的,而是相互联系的,一个变量的变化会引起其他变量的相应变化,这些变化之间存在对应关系.



函数是数量化地表达变化与对应思想的数学工具,变化规律表现在变量(自变量与函数)之间的对应关系上,函数通过数或形定量地描述这种对应关系.变化与对应思想正是本章内容中蕴涵的基本思想.



人的认识过程是波浪式前进、螺旋式上升的.学习数学中的一个重要的基本概念,需要分阶段地完成,逐步深化认识程度.本套教科书将对代数函数的学习分三章安排,即八年级上学期学习第十四章“一次函数”,八年级下学期学习第十七章“反比例函数”,九年级下学期学习第二十六章“二次函数”.在学习这些内容之前,分别安排了学习一次方程(组)、分式方程和一元二次方程,即按代数运算类型划分阶段,将函数作为方程的后续内容.



本章是学习函数的第一阶段,其教学目标如前所述,重点在于初步认识函数概念,并具体讨论最简单的初等函数———一次函数.本章教科书力求能在具体的数学内容中渗透体现变化与对应的思想,使学生能潜移默化地感触体会函数内容中最基本的东西,在对数学思想方法的学习方面有所收获.



本章在学生对一元一次方程、二元一次方程组和一元一次不等式等以一次(线性)运算为基础的数学模型的已有认识上,从变化和对应的角度,对一次运算进行更深入的讨论.



教科书在进入专门对一次函数的讨论之前,安排学生先了解函数的一般概念.第14.1节首先从5个具有实际背景的问题入手,引导学生通过填表和列式表示问题中相关的量,从中认识常量和变量的主要特征,学会区别它们.接着,教科书通过“归纳”栏目总结出这些问题中变量间关系的共同特点,即问题中的两个变量互相联系,当其中一个变量取定一个值时,另一变量有唯一确定的对应值.教科书又继续用心电图、人口统计表等问题对这种变化与对应关系进行了补充和强化,这也为后面的函数表示法写下伏笔.在此基础上,教科书第一次给出了函数的一般概念以及自变量、函数值等概念.教科书中给出的函数定义是突出变化与对应的,其中主要有两层意思:



1.两个变量互相联系,一个变量变化时另一个变量也发生变化;



2.函数与自变量之间是单值对应关系,自变量的值确定后,函数的值是唯一确定的.



这是关于函数的最基本、最朴素的刻画.这一节的最后部分重点讨论了函数图象的概念,图象是直观地描述和研究函数的重要工具.三种常见的函数表示法,即列表法、解析式法和图象法,是反映函数的三种不同形式.



(二)从特殊到一般地认识一次函数



人们认识事物往往经历“从特殊到一般”的过程,教科书对本章重点内容的安排正是按照这样的过程展现的.



在对函数概念初步讨论后,教科书转入对一种具体的初等函数的讨论,第14.2节的标题“一次函数”点出了这一节的核心对象.这一节首先从讨论正比例函数开始,正比例函数是特殊的一次函数,即中的类型.对正比例函数的定义、图象和性质的讨论,可以为讨论一般的一次函数奠定基础.



在分析具体问题时,教科书注意了引导学生利用事物之间的联系从特殊到一般地认识问题,例如讨论一次函数的图象时,教科书先对比函数和的区别,由直线的平移变换过渡到直线,然后再得出由两点确定直线的一般方法.采用这种处理方式能够展示解决问题的一种基本策略,即“先特殊化、简单化,再一般化、复杂化”的做法.

回复

使用道具 举报

91#
发表于 2008-11-14 07:30:00 | 只看该作者
(三)用函数观点回顾与审视相关内容,加强知识体系的构建



在学习过程中,人们需要不断地提高认识问题的水平,这包括对过去已认识过的事物的再认识,也包括对新认识的事物与已认识的事物之间的联系的认识.这种认识水平的提高,是构建知识体系的过程中不可缺少的.



本章最后的第14.3节“用函数观点看方程(组)与不等式”,从函数的角度对前面学习过的一元一次方程、一元一次不等式和二元一次方程组重新进行了分析,这种再认识不是原来水平上的回顾复习,而是站在更高的起点上的动态分析.用一次函数可以把上述三个不同的数学对象统一认识,由此可见函数的重要性.“水涨船高”,随着知识积累的增加,认识事物的水平也会相应提高.“站得高看得远”,通过学习本节内容,不仅可以加深对方程(组)与不等式等数学对象的理解,而且可以加大对已经学过的相关内容之间的联系的认识,加强知识间横纵向的融会贯通,提高灵活地分析解决问题的能力.这也从一个侧面反映了函数概念的作用.



(四)注重联系实际问题,体现数学建模的作用



世界是运动变化的,函数是研究运动变化的重要数学模型,它来源于客观实际又服务于客观实际.本章教科书中实际问题贯穿于始终,它们中有些是作为函数的实际背景,为降低学习抽象概念的难度服务的.例如,在引入函数概念时,教科书通过对一系列实际问题中变量间关系的分析与描述,归纳出一般性的规律要点,得出函数的定义.这样的过程是由具体到抽象,由特殊到一般的过程,是以实际问题抽象为数学模型为线索的展现过程.有些实际问题是作为应用举例体现函数的广泛的应用性,为培养应用数学解决实际问题的意识和能力服务的.例如,第14.2节中的例6就是这样的问题,它是一个选择最优方案的实际问题,可以归为线性规划的初级问题.要解决这个问题,需要先确定影响总运费的最关键的变量,再列出表示总运费的函数解析式,然后分析这个解析式或相应的图象,找出总运费的最小值.分析和解决这个问题的过程,对体现数学建模的作用具有比较典型的意义.



本章的数学活动中,安排了根据表格中实际问题的数据信息用函数进行预测估计或选择方案的问题.安排这些问题的目的在于:一方面通过实际生活中的问题,进一步突出函数这种数学模型应用的广泛性和有效性;另一方面使学生能在解决实际问题的情境中运用所学数学知识,进一步提高分析问题和解决问题的综合能力. 本章在学生已有的建立方程或不等式这样的数学模型的基础上,继续重视数学与实际的关系,在建立函数这种应用更广泛的数学模型的过程中继续体现建模思想.



此外,教科书对于数学与其他科学技术的联系也予以关注.例如,“阅读与思考 科学家如何测算地球的年龄”中,介绍了放射性物质蜕变过程中指数函数变化曲线对确定半衰期的作用等.编者希望学生通过学习本章不仅进一步学习数学,而且也能扩大对相关科技知识的了解.



    三、几个值得关注的问题



(一)重视数学概念中蕴涵的思想,注意从运动变化和联系对应的角度认识函数



数学是以数量关系和空间形式为主要研究对象的科学,数量关系和空间形式是从现实世界中抽象出来的,世界永远是处于运动变化之中的,因此无论是数量关系中还是空间形式中都充满了有关运动变化的问题.函数正是研究运动变化的重要数学模型,它反映的是变量之间的对应规律,它对研究数量关系的作用是十分显然的.由于空间形式可以代数化(解析几何的产生就是典型例证),所以在对于空间形式的研究中函数也能发挥巨大作用,数学史的发展对此有充分的证明,函数在当今数学的各个领域都是极为重要的角色.



函数概念来源于客观实际需要,也来自数学内部发展的需要.它是以变化与对应的思想为基础的数学概念.怎样认识函数概念呢?学习函数概念不能只注重背记定义而不关注它的实质,要使学生理解定义的真正含义,即函数概念的实质就是运动变化与联系对应.使学生了解对于许多客观事物必须从运动变化的角度研究,许多问题中的各种变量是相互联系的,变量之间存在对应规律.变量的值之间存在对应关系,其中就有单值对应关系,刻画这种关系的数学模型就是函数.本章所讨论的是最简单、最基本的函数,但是函数不分简单还是复杂,在本质上都是上面所说的那样的数学模型.作为关于函数的初始教学,应有意识地体现函数的本质,这正是本章内容中蕴涵的基本思想.当然,对于运动变化与联系对应的思想的认识也是需要逐步理解的,所以教学中应注意在不同阶段对这一思想的渗透介绍要有不同的做法和要求,要逐步深化,要从具体到抽象,从特殊到一般地引导学生认识它.



本套教科书在本章中首次正式出现函数概念,通过本章教学,学生应对函数形成初步的正确认识,即认识到虽然函数的表示方法有多种,因问题不同函数的具体形式可以形形色色,但是各种函数都是反映变化规律的数学工具,现在学习的函数都是刻画同一个变化过程中两个变量之间的对应关系的模型,对于同一类问题可以用同一类函数进行研究(例如用一次函数研究线性规划问题).



(二)借助实际问题情景,由具体到抽象地认识函数;通过函数应用举例,体现数学建模思想



现实中存在大量问题涉及具有简单函数关系的变量,其中许多问题中的数量关系是一次(也称线性)的,这为学习本章内容提供了大量的现实素材.在本章教科书中,实际问题情境多次出现,其作用主要体现在以下方面:

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2025-1-11 05:49

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表