|
沙发
楼主 |
发表于 2012-6-3 02:01:02
|
只看该作者
2012年福建省高考压轴卷 数学理
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),第Ⅱ卷第21题为选考题,其它题为必考题.本试卷共6页,满分150分.考试时间120分钟.
注意事项:
1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.
2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.在草稿纸、试题卷上答题无效.
3.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.
4.做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑.
5.保持答题卡卡面清洁,不折叠、不破损.考试结束后,将本试卷和答题卡一并交回.
参考公式:
样本数据 、 、…、 的标准差:
,其中 为样本平均数;
柱体体积公式: ,其中 为底面面积, 为高;
锥体体积公式: ,其中 为底面面积, 为高;
球的表面积、体积公式: , ,其中 为球的半径.
第Ⅰ卷(选择题 共50分)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 已知复数 和复数 ,则 为( )
A. B. C. D.
2. 已知 为等差数列,若 ,则 ( )
A. B. C. D.
更多免费资源下载绿色圃中小学教育网http://www.lspjy.com 课件|教案|试卷|无需注册
5. 在样本的频率分布直方图中, 共有9个小长方形, 若第一个长方形的面积为0.02, 前五个与后五个长方形的面积分别成等差数列且公差互为相反数,若样本容量为160, 则中间一组(即第五组)的频数为( )
(A)12
(B)24
(C)36
(D)48
4. 已知 是直线, 是平面,且 ,则“ ”是“ ”的
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
5. 一个几何体的三视图如图所示(单位长度:cm), 则此几何体的表面积是
A.
B.
C.
D.
6. 函数 在区间 恰有2个零点,则 的取值范围 为( )
A. B. C. D.
7. 若 ,且 ,则 的夹角为( )
A.30° B.60° C.120° D.150°
8. 已知 为坐标原点,点 的坐标为 ( ),点 的坐标 、 满足不等式组 . 若当且仅当 时, 取得最大值,则 的取值范围是 ( )
A. B. C. D.
9. 在平面直角坐标系中,定义 为两点 , 之间的“折线距离”. 若 为坐标原点, 则 与直 线 上一点的“折线距离”的最小值是( )
A. B. C.2 D. 4
10. 已知 , ,若函数 有唯一零点 ,函数 有唯一零点 ,则有 ( )
A. B.
C. D.
第Ⅱ卷(非选择题 共100分)
二、填空题:本大题共5小题,每小题4分,共20分.将答案填在答题卡的相应位置.
11. 若集合M= ,集合N= , ,则实数 的值的个数是_________
12. 在区间[-3,5]上随机取一个数x,则 [1,3]的概率为_________
13. 记 的展开式中第k项的系数为 = _________
14. 设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么双曲线 的离心率是_________
15. 洛萨 科拉茨(Lothar Collatz,1910.7.6-1990.9.26)是德国数学家,他在1937年提出了一个著名的猜想:任给一个正整数 ,如果 是偶数,就将它减半(即 );如果 是奇数,则将它乘3 加1(即 ),不断重复这样的运算,经过有限步后,一定可以得到1.如初始正整数为6,按照上述变换规则,我们得到一个数列:6,3,10,5,16,8,4,2,1.对科拉茨(Lothar Collatz)猜想,目前谁也不能证明,更不能否定.现在请你研究:如果对正整数 (首项)按照上述规则施行变换(注:1可以多次出现)后的第八项为1,则 的所有可能的取值为_________
三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.
16.(本小题满分13分)
工人在包装某产品时不小心将两件不合格的产品一起放进了一个箱子,此时该箱子中共有外观完全相同的六件产品.只有将产品逐一打开检验才能确定哪两件产品是不合格的,产品一旦打开检验不管是否合格都将报废.记 表示将两件不合格产品全部检测出来后四件合格品中报废品的数量.
(Ⅰ)求报废的合格品少于两件的概率;
(Ⅱ)求 的分布列和数学期望.
17.(本小题满分13分)
已知函数 .
(Ⅰ) 求函数 的单调递增区间;
(Ⅱ) 已知 中,角 所对的边长分别为 ,若 ,
,求 的面积 .
|
|