绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

查看: 8588|回复: 1
打印 上一主题 下一主题

苏教版四年级数学《用计算器探索规律》教学片断及反思

[复制链接]
跳转到指定楼层
楼主
发表于 2012-5-18 22:27:20 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
片断一:
师:我想继续和大家玩一个游戏,愿意吗?这个游戏的名字叫“我的特异功能”。我需要2名小助手和我配合一下。
(指名上前)
(投影出示表格,如下图)
因  数
因  数
积的变化
师(对一生):这是一张表格,你的任务就是根据老师的要求来填表、回答问题,你的任务很重要。
师(对另一生):你的任务也很艰巨,就是帮她(停顿)拿着话筒(学生笑),这样大家才能听清她的回答,另外帮忙看着大屏幕,不要让她的手或头挡着画面。其他同学注意看、注意听。
师(背朝学生及屏幕):小助手,请在表格第一行任写一个乘法算式,如果因数比较大,可以用计算器计算。小助手,请告诉我,积是多少?
(生报)
师:小助手,第二行的第一个因数不变,和上面一样,第二个因数任意去乘一个数,告诉我,第二个因数乘了几?
(生报)
师:同学们,虽然我不知道原来的2个因数是多少,但我知道现在的积是多少,是××,不相信,你们算算看。
师:相信老师有特异功能吗?(不相信)那你们猜猜老师是怎么算出现在的积的?
生:我也能算出来,用上一行的积去乘6。
师:是吗?大家算算看。
(生计算,表示同意)
师:我想采访一下这位同学,你怎么想到用上一行的积乘这个数的?(指第二个因数乘的数)
生:因为这个算式中一个因数不变,另一个因数乘以6,所以积也同时乘以6。
师:那如果乘7呢?
生:积也乘7。
师:如果乘99呢?
生:积也乘99。
师:这个同学提了一个很有意思的想法,他认为:一个因数不变,另一个因数乘几,积也乘几(师板书)。大家同意他的说法吗?(同意)我可有点半信半疑。这个说法我们可以称之为是一个猜想,究竟对不对(板书?),我们需要进一步来验证。思考一下,如何验证?
生:可以把这个猜想用到实际中。
师:对,事实胜于雄辩,咱们可以举些例子。
(生举例,然后一组用因数×因数算出积是多少,另一组用猜想的方法算出积,比较结果,进行验证。)
因  数
因  数
积的变化
29
46
1334
——
29
46×6
8004
1334×6
29×80
46
106720
1334×80
29
46×10
13340
1334×10
29×20
46
26680
1334×20
师:同学们,咱们任意举了几个例子,请大家仔细观察整张表格,你发现了什么?
生:刚才那位同学说的猜想是正确的。一个因数不变,另一个因数乘几,积也同样乘几。
师:看来在29×46=1334这个乘法算式中这个猜想是成立的,那么在其他乘法算式中,这个猜想是否还成立呢?
生:是成立的。
师:口说无凭,咱们还是得用事实说话。
(生自主举例,指名展示,小组交流)
师:有没有哪位同学举的例子不符合猜想的,请举手(无人举手)看来,在所有的乘法算式里,这个猜想都是成立的。其实老师在开始的游戏中也是用这种方法计算的,说有特异功能,只不过想考考大家。没想到你们还真不简单,不迷信老师,只相信自己的眼睛和大脑,真棒!我提议大家为自己的表现鼓鼓掌。
师:在所有的乘法算式里,其实都存在这样一个规律,这个规律就是什么?
(生齐答)
[反思]:苏教版国标本在处理“积的变化规律”这一课题时,让学生运用不完全归纳法,既要掌握“一个因数不变,另一个因数乘几,积也乘几”的规律,还要对“猜想—验证”的探索方法有所尝试、有所应用。虽然教材在此前为本节课内容作了大量的铺垫、准备,但学生的感知还比较表象、冗杂。因此,我设计了“特异功能”这个游戏环节,既调动学生积极性,又通过猜“老师是怎么算的”,在具体情境中唤起学生旧有的感知,从而作出猜想。验证环节竭力体现研究的科学性、严谨性。由29×46=1334这个个例推广到其他乘法算式,二者验证的结合才是完整的、严谨的,思维才是有序的。另外,整个验证过程也体现了“由扶到放”,教师的主导作用和学生的主体作用都得到恰到好处的发挥。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 顶 踩
回复

使用道具 举报

沙发
 楼主| 发表于 2012-5-18 22:27:42 | 只看该作者
片断二:
师:请任意写一个乘法算式,举例并用计算器计算,如果其中的一个因数不变,另一个因数乘一个数,得到的积会有什么变化?符合刚才的猜想吗?
(学生自主举例验证,指名展示)
……
生:
因  数
因  数
积的变化
52
8
416
——
52
80
4160
416×10
520
80
41600
416×100
师:这位同学举的例子不仅验证了咱们刚才的猜想,而且又提出了一个新的问题,等咱们把只有一个因数变化的情况研究好了,再来研究这个问题好吗?
……
(拓展题)
因 数
12
12
12
120
120
因 数
2
4
20
20
40
24
48
240
2400
4800
师:观察这个表格中各列因数和积的变化,你想到什么就说什么。
生:第1列和第2列相比,第一个因数不变,另一个因数扩大2倍,积也扩大2倍。
生:第3列和第4列相比,第一个因数乘10,第二个因数不变,积也乘10。
生:第2列和第5列相比,第一个因数乘10,第二个因数也乘10,积就乘了100。
师:前2位同学说的都是“一个因数不变,另一个因数发生了变化”,再次验证我们今天发现的规律,而这位同学说的和刚才哪位同学提到的例子是一样的情况?
(再次展示那位同学的例子)
师:你们觉得这种情况是只在这2个算式中存在的特殊情况,还是在其它算式也存在?
生:在其他算式也存在。
师:我们现在也可以把这个想法看作是一个新的猜想,如果想继续研究,接下来该怎么办?
生:举例验证。
师:课后有兴趣的同学可以继续研究这个问题,说不定大家还会发现新的规律,老师期待着你们的成功。
[反思]:学生自主举例验证后,我在展示学生例子时无意选择的一个小姑娘给了我一个“措手不及”。说实话,她没有按我的要求举例,但她的想法却是一部分“先富起来”的人的真实想法。她的思维是超前的,但同时她也给我制造了“小麻烦”——问题的研究还没到那个深度呢,是置之不理?还是被牵着鼻子走?幸好,我采取了“冷处理”方式——“等咱们把只有一个因数变化的情况研究好了,再来研究这个问题,好吗?”。结尾拓展处,学生发现的例子与这个小姑娘举的例子遥相呼应,生成新的猜想是那么自然,继续研究的需要是那么迫切,老师的期待是那么殷切,探索由课内延伸到了课外。试想,如果当时我没有叫那个小姑娘,课堂表面也许如我所预想的那么风平浪静,但能说每个学生的心中、脑中没有暗潮涌动吗?我们的课堂需要生成,生成需要我们——教师给予学生更多的尊重、自由,给予学生更多的时间和空间,生成需要我们——教师抓住学生思维中瞬间闪灭的火花,让它引燃更大、更亮的礼花!
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2024-11-18 01:37

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表