绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

查看: 21365|回复: 2
打印 上一主题 下一主题

高一数学必修4知识点总结归纳总复习提纲

[复制链接]
跳转到指定楼层
楼主
发表于 2012-5-16 17:45:01 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
     本站所有资源下载均无需注册,下载方法:点击下面的附件,选择右键,目标另存为,保存在你的电脑或桌面上解压缩即可!
      
高一数学必修4知识点总结归纳总复习提纲.rar (264.69 KB, 下载次数: 10555)
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 顶 踩
回复

使用道具 举报

沙发
 楼主| 发表于 2012-5-16 17:45:18 | 只看该作者
高一数学必修4知识点

2、角 的顶点与原点重合,角的始边与 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.
第一象限角的集合为
第二象限角的集合为
第三象限角的集合为
第四象限角的集合为
终边在 轴上的角的集合为
终边在 轴上的角的集合为
终边在坐标轴上的角的集合为
3、与角 终边相同的角的集合为
4、已知 是第几象限角,确定 所在象限的方法:先把各象限均分 等份,再从 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则 原来是第几象限对应的标号即为 终边所落在的区域.
5、长度等于半径长的弧所对的圆心角叫做 弧度.
6、半径为 的圆的圆心角 所对弧的长为 ,则角 的弧度数的绝对值是 .
7、弧度制与角度制的换算公式: , , .
8、若扇形的圆心角为 ,半径为 ,弧长为 ,周长为 ,面积为 ,则 , , .
9、设 是一个任意大小的角, 的终边上任意一点 的坐标是 ,它与原点的距离是 ,则 , , .
10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.
11、三角函数线: , , .
12、同角三角函数的基本关系:


13、三角函数的诱导公式:
, , .
, , .
, , .
, , .
口诀:函数名称不变,符号看象限.
, .
, .
口诀:奇变偶不变,符号看象限.
14、函数 的图象上所有点向左(右)平移 个单位长度,得到函数 的图象;再将函数 的图象上所有点的横坐标伸长(缩短)到原来的 倍(纵坐标不变),得到函数 的图象;再将函数 的图象上所有点的纵坐标伸长(缩短)到原来的 倍(横坐标不变),得到函数 的图象.
函数 的图象上所有点的横坐标伸长(缩短)到原来的 倍(纵坐标不变),得到函数
的图象;再将函数 的图象上所有点向左(右)平移 个单位长度,得到函数 的图象;再将函数 的图象上所有点的纵坐标伸长(缩短)到原来的 倍(横坐标不变),得到函数 的图象.
函数 的性质:
①振幅: ;②周期: ;③频率: ;④相位: ;⑤初相: .
函数 ,当 时,取得最小值为  ;当 时,取得最大值为 ,则 , , .
15、正弦函数、余弦函数和正切函数的图象与性质:
      




图象



定义域  



值域  


回复

使用道具 举报

板凳
 楼主| 发表于 2012-5-16 17:45:22 | 只看该作者


最值        当  时, ;当   
时, .
当 时,      
;当
时, .
既无最大值也无最小值
周期性         



奇偶性        奇函数        偶函数        奇函数
单调性        在
上是增函数;在

上是减函数.
在 上是增函数;在
上是减函数.

上是增函数.

对称性        对称中心
对称轴
对称中心
对称轴
对称中心
无对称轴
16、向量:既有大小,又有方向的量.
数量:只有大小,没有方向的量.
有向线段的三要素:起点、方向、长度.
零向量:长度为 的向量.
单位向量:长度等于 个单位的向量.
平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.
相等向量:长度相等且方向相同的向量.
17、向量加法运算:
⑴三角形法则的特点:首尾相连.
⑵平行四边形法则的特点:共起点.



更多免费资源下载绿色圃中小学教育网http://www.lspjy.com 课件|教案|试卷|无需注册
⑶三角形不等式: .
⑷运算性质:①交换律: ;②结合律: ;③ .
⑸坐标运算:设 , ,则 .
18、向量减法运算:
⑴三角形法则的特点:共起点,连终点,方向指向被减向量.
⑵坐标运算:设 , ,则 .
设 、 两点的坐标分别为 , ,则 .
19、向量数乘运算:
⑴实数 与向量 的积是一个向量的运算叫做向量的数乘,记作 .
① ;
②当 时, 的方向与 的方向相同;当 时, 的方向与 的方向相反;当 时, .
⑵运算律:① ;② ;③ .
⑶坐标运算:设 ,则 .
20、向量共线定理:向量 与 共线,当且仅当有唯一一个实数 ,使 .
设 , ,其中 ,则当且仅当 时,向量 、 共线.
21、平面向量基本定理:如果 、 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量 ,有且只有一对实数 、 ,使 .(不共线的向量 、 作为这一平面内所有向量的一组基底)
22、分点坐标公式:设点 是线段 上的一点, 、 的坐标分别是 , ,当 时,点 的坐标是 .
23、平面向量的数量积:
⑴ .零向量与任一向量的数量积为 .
⑵性质:设 和 都是非零向量,则① .②当 与 同向时, ;当 与 反向时, ; 或 .③ .
⑶运算律:① ;② ;③ .
⑷坐标运算:设两个非零向量 , ,则 .
若 ,则 ,或 .
设 , ,则 .
设 、 都是非零向量, , , 是 与 的夹角,则 .
24、两角和与差的正弦、余弦和正切公式:
⑴ ;
⑵ ;
⑶ ;
⑷ ;
⑸ ( );
⑹ ( ).
25、二倍角的正弦、余弦和正切公式:
⑴ .
⑵ ( , ).
⑶ .
26、 ,其中 .
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2025-1-10 02:56

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表