|
第一课时 抽屉原理导学案
一\导学目标:
1、知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决
简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗
透“建模”思想。
2、过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推
理的能力。
3、情感与态度:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴
趣,感受到数学文化及数学的魅力。
教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 二、预习学案:
1、了解课前学生调查所喜爱的运动员的基本情况。
2、老师针对运动员的基本情况进行猜测。
3、学生验证。
4、揭题:想知道老师为什么会做出如此准确的判断吗?其实这里面蕴含着一个有趣的数学
原理——抽屉原理。(板题)
三、导学案:
第一步:研究4枝铅笔放进了笔筒的现象。
1、示题:把4枝铅笔放进3个笔筒,有哪些不同的放法?你们又能从这些方法中发现什么
有趣的现象?
2、学生以小组为单位进行实验操作,并把放法和发现填写在记录卡上。
3、小组汇报交流。
4、小结:把4枝铅笔放进3个笔筒,总有一个笔筒至少放进2枝铅笔。
5、师:怎样才能很快地找出这个至少数2?
6、引导学生用假设来想:假设先在每个笔筒里各放1枝,这时还剩下1枝,这剩下的1枝
无论放在哪个笔筒,总有一个笔筒里会出现2枝,也就是说总有一个笔筒里至少放进2枝铅
笔。
4÷3=1……1 1+1=2
7、那照这样的思路:
把6枝铅笔放进5个笔筒,怎样想?
把10枝铅笔放进9个笔筒,情况怎样?
100枝放进99个笔筒呢?
问:发现了什么规律?——只要铅笔数比笔筒数多1,总有一个笔筒里至少放进2枝铅笔。
第二步:研究铅笔数比笔筒数不是多1的现象。
1、学生自己提问:还有哪些值得我们继续研究的问题。
2、学生自主探究:
①如果铅笔数比笔筒数不是多1,而是多2、3……,情况怎样?
②如果平均分成后余下的枝数不是1,而是2、3……,情况怎样?
3、汇报交流。
4、发现求至少数的规律。
物体数÷抽屉数=商……余数
至少数=商+1
5、总结抽屉原理
把多于kn个的物体放进n个抽屉里,总有一个抽屉里至少放放(k+1)个物体。
6、听一段资料介绍。
四、课堂检测
1、填空。
①把9本书放入2个抽屉,则总有一个抽屉里至少放( )本书。
②7只鸽子飞回5个鸽舍,至少有( )只鸽子要飞进同一鸽舍。
③春游时30个同学到公园划船,现有5条船,则总有一条船上至少坐( )人。
2、下面的说法对吗?说说你的理由:
向东小学六年级共有370名学生,其中六(2)班有49名学生。
①六年级里至少有2名学生的生日同一天。( )
②六(2)班只有5名学生的生日在同一月。( ) 问:想一想:用抽屉原理解决实际问题的关键是什么?
3、回到课初老师所做的猜测,为什么老师会做出如此准确的判断呢?
关键:把运动员的人数当作物体数
把男生两种性别当作抽屉
把一年12个月当作抽屉
所4种血型当作抽屉
把12个生肖当作抽屉
4、玩“猜扑克”的游戏。
5、学生把现实生活中能用抽屉原理解释的现象写下来。
五、全课总结。
六、教学反思:
|
|