第二学段(4~6年级) 数与代数
例23 如果一个人的寿命是76岁,这个人一生的心跳大约有多少次?光速大约是30万千米/秒,光从太阳到达地球大约需要多长时间?如果把100万张纸叠加起来,会有珠穆朗玛峰那么高吗? [说明] 参见例3。在计算的过程中,要合理利用数的单位和度量单位来减少位数。有些问题需要学生自己查找资料,如太阳到地球的距离、珠穆朗玛峰的海拔高度,这样的查找资料活动有利于学生养成调查研究的习惯。
例24 某学校为学生编号,设定末尾用1表示男生,用2表示女生,例如,200903321表示“2009年入学的三班的32号同学,该同学是男生”。那么,201004302表示什么? [说明] 这个例子可以启发学生思考,编号提供给我们一些什么信息,比如,一个年级最多有多少个班,一个班最多有多少名学生。可以引导学生设计本学校的学生编号方案。还可以启发学生通过观察学生证的编号估计学校的学生数。
例25 说明 ,0.25和25%的含义。 [说明] 分数、小数和百分数都是有理数的常用表示方法,但含义是有所不同的。真分数通常表示部分与整体的关系,如全班同学人数的 ;小数通常表示具体的数量,如一只铅笔0.25元;百分数是同分母(统一标准)的比值,便于比较,如去年比前年增长21%、今年比去年增长25%。希望学生能够理解它们的含义,在生活中能够合理使用。
例26 李阿姨去商店购物,带了100元,她买了两袋面,每袋30.4元,又买了一块牛肉,用了19.4元,她还想买一条鱼,大一些的每条25.2元,小一些的的每条15.8元。请帮助李阿姨估算一下,她带的钱够不够买小鱼?能不能买大鱼? [说明]本题有两问。第一问“够不够买小鱼”可以这样估算: 买一袋面不超过31元,两袋面不超过62元;买牛肉不超过20元;买小鱼不超过16元;总共不超过60+20+16=98(元),李阿姨的钱是够用的。 第二问“能不能买大鱼”可以这样估算: 买一袋面至少要30元,两袋面至少要60元;买牛肉至少要19元;买大鱼至少要25元;总共至少要60+19+25=104(元)。已经超过100元了,李阿姨不能买大鱼了。 这类问题在生活中很常见。从数学上看,第一问要判断100元是否超过三种物品的价格总和,适当放大;第二问要判断三种物品的价格总和是否超过100元,适当缩小,一般不需要精确计算,只需要估算就可以了。
例27 9.9×6.9比70小吗? 比1大吗? [说明] 参考例26。 可以把9.9放大为10,因为10×6.9=69,估算结果比70小。
例28 利用计算器计算15×15,25×25,…,95×95,并探索规律。 [说明] 目的是运用计算器进行计算,从中发现一些有趣的规律。学生可以通过观察结果与乘数的关系,发现规律。例如 15×15=225=1×2×100+25, 25×25=625=2×3×100+25, 35×35=1225=3×4×100+25, 等等。这个规律在实际运算中也是有用的。
例29 彩带每米售价3.2元,购买2米,3米,……,10米彩带分别需要多少钱?在方格纸上把与数对(长度,价钱)相对应的点描出,并且回答下列问题: (1)所描的点是否在一条直线上? (2)估计一下,买1.5米的彩带大约要花多少元? (3)小刚买的彩带长度是小红的3倍,他所花的钱是小红的几倍? [说明]希望学生感受成正比例关系的一组数对所对应的点在一条直线上,并且能够借助图形进行数据的估计。 教学中引导学生在描点之前,先建立下面的表格,有利于直观地理解正比例关系,并为描点作准备。
例30 联欢会上,小明按照3个红气球、2个黄气球、1个绿气球的顺序把气球串起来装饰教室。你知道第16个气球是什么颜色吗? [说明]希望学生能够通过所给条件,发现规律,进一步了解规律可以借助各种符号表示(参见例9)。 在解决这个问题时,学生可以有多种方法。例如,用A表示红气球,B表示黄气球,C表示绿气球,则按照题意气球的排列顺序可以写成 AAABBCAAABBC… 从中找出第16个字母,由此推出第16个气球的颜色。
例31 一个房间里有四条腿的椅子和三条腿的凳子共16个,如果椅子腿数和凳子腿数加起来共有60条,那么有几个椅子和几个凳子? [说明] 可以引导学生运用尝试的办法探索规律,得出结果,使学生感受这是数学探索的一种有效途径。比如,可以有规律地给出下面的计算过程: 椅子数/个 凳子数/个 腿的总数/条 16 0 4×16=64 15 1 4×15+3×1=63 14 2 4×14+3×2=62 继续计算下去,可以得到椅子数12,凳子数4时,腿数恰好为60。通过上表可以启发学生思考:每减少一个椅子就要增加一个凳子,腿的总数就要减少4-3=1。腿的总数为60时,需要减少的椅子数是64-60=4,于是椅子数是16-4=12,凳子数是0+4=4。最后验证一下:12×4+3×4=60,是正确的。当然,也可以从凳子数的变化思考:每减少一个凳子就要增加一个椅子,腿的总数就要增加4-3=1。 对于学有余力的学生,教师可以鼓励他们讨论“鸡兔同笼”问题,还可以进一步用字母代替椅子数与凳子数,得到计算腿的总数的模型。 (此文根据教育部发布《2011数学课程标准》pdf版制作,仅供参考。)
|