|
(2)如果这头牛只能绕柱子转过n°角,那么它的最大活动区域应该是n°圆心角的两个半径的n°圆心角所对的弧所围成的圆的一部分的图形,如图:
像这样,圆的一条弧和经过这条弧的端点的两条半径所围成的图形叫做扇形.
(小黑板),请同学们结合圆心面积S= R2的公式,独立完成下题:
1.该图的面积可以看作是_______度的圆心角所对的扇形的面积.
2.设圆的半径为R,1°的圆心角所对的扇形面积S扇形=_______.
3.设圆的半径为R,2°的圆心角所对的扇形面积S扇形=_______.
4.设圆的半径为R,5°的圆心角所对的扇形面积S扇形=_______.
……
5.设圆半径为R,n°的圆心角所对的扇形面积S扇形=_______.
老师检察学生练习情况并点评
1.360 2.S扇形= R2 3.S扇形= R2 4.S扇形= 5.S扇形=
因此:在半径为r的圆中,圆心角n°的扇形的面积S为
其中l是n°的圆心角所对的弧长
例1.如图,已知扇形AOB的半径为10,∠AOB=60°,求 的长(结果精确到0.1)和扇形AOB的面积结果精确到0.1)
分析:要求弧长和扇形面积,只要有圆心角,半径的已知量便可求,本题已满足.
解: 的长= ×10= ≈10.5
S扇形= ×102= ≈52.3
因此, 的长为25.1cm,扇形AOB的面积为150.7cm2.
三、巩固练习
例2.已知扇形AOB的半径为1.5cm,∠AOB=58°,求扇形AOB的面积结果精确到0.1 )
四、归纳小结(学生小结,老师点评)
本节课应掌握:
1.n°的圆心角所对的弧长L=
2.圆心角为n°的扇形面积是S扇形=
五、布置作业
教材P89 练习 P92 A 3
教学后记:
3.4.2 圆锥的侧面积和全面积
教学内容
1.圆锥母线的概念.
2.圆锥侧面积的计算方法.
3.计算圆锥全面积的计算方法.
4.应用它们解决实际问题.
教学目标
了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,并会应用公式解决问题.
通过设置情景和复习扇形面积的计算方法探索圆锥侧面积和全面积的计算公式以及应用它解决现实生活中的一些实际问题.
重难点、关键
1.重点:圆锥侧面积和全面积的计算公式.
2.难点:探索两个公式的由来.
3.关键:你通过剪母线变成面的过程.
教具、学具准备
直尺、圆规、量角器、小黑板.
教学过程
一、复习引入
1.什么是n°的圆心角所对的弧长和扇形面积的计算公式,并请讲讲它们的异同点.
2.问题1:一种太空囊的示意图如图所示,太空囊的外表面须作特别处理,以承受重返地球大气层时与空气摩擦后产生的高热,那么该太空囊要接受防高热处理的面积应由几部分组成的.
老师点评:(1)n°圆心角所对弧长:L= ,S扇形= ,公式中没有n°,而是n;弧长公式中是R,分母是180;而扇形面积公式中是R,分母是360,两者要记清,不能混淆.
(2)太空囊要接受热处理的面积应由三部分组成;圆锥上的侧面积,圆柱的侧面积和底圆的面积.
这三部分中,第二部分和第三部分我们已经学过,会求出其面积,但圆锥的侧面积,到目前为止,如何求,我们是无能为力,下面我们来探究它.
二、探索新知
我们学过圆柱的侧面积是沿着它的母线展开成长方形,同理道理,我们也把圆锥顶点和底面圆上任意一点的连线段叫做圆锥的母线.
(学生分组讨论,提问二三位同学)
问题2:与圆柱的侧面积求法一样,沿母锥一条母线将圆锥侧面剪开并展平,容易得到,圆锥的侧面展开图是一个扇形,设圆锥的母线长为L,底面圆的半径为r,如图24-115所示,那么这个扇形的半径为________,扇形的弧长为________,因此圆锥的侧面积为________,圆锥的全面积为________.
老师点评:很显然,扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积S= ,其中n可由2 r= 求得:n= ,∴扇形面积S= = rL;全面积是由侧面积和底面圆的面积组成的,所以全面积= rL+ r2.
例1.圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽,已知纸帽的底面周长为58cm,高为20cm,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到0.1cm2)
分析:要计算制作20顶这样的纸帽至少要用多少平方厘米的纸,只要计算纸帽的侧面积.
解:设纸帽的底面半径为rcm,母线长为Lcm,则
r=
L= ≈22.03
S纸帽侧= rL≈ ×58×22.03=638.87(cm)
638.87×20=12777.4(cm2)
所以,至少需要12777.4cm2的纸.
例2.已知扇形的圆心角为120°,面积为300 cm2.
(1)求扇形的弧长;
(2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面面积为多少?
分析:(1)由S扇形= 求出R,再代入L= 求得.(2)若将此扇形卷成一个圆锥,扇形的弧长就是圆锥底面圆的周长,就可求圆的半径,其截面是一个以底是直径,圆锥母线为腰的等腰三角形.
解:(1)如图所示:
∵300 =
∴R=30
∴弧长L= =20 (cm)
(2)如图所示:
∵20 =20 r
∴r=10,R=30
AD= =20
∴S轴截面= ×BC×AD
= ×2×10×20 =200 (cm2)
因此,扇形的弧长是20 cm卷成圆锥的轴截面是200 cm2.
三、巩固练习
例3 ,圆锥的的高为2cm,底面圆的半径为r为1.6cm,求圆锥的侧面积为和全面积(精确到0.1 cm2).
四、应用拓展
例4.如图所示,经过原点O(0,0)和A(1,-3),B(-1,5)两点的曲线是抛物线y=ax2+bx+c(a≠0).
(1)求出图中曲线的解析式;
(2)设抛物线与x轴的另外一个交点为C,以OC为直径作⊙M,如果抛物线上一点P作⊙M的切线PD,切点为D,且与y轴的正半轴交点为E,连结MD,已知点E的坐标为(0,m),求四边形EOMD的面积(用含m的代数式表示).
(3)延长DM交⊙M于点N,连结ON、OD,当点P在(2)的条件下运动到什么位置时,能使得S四边形EOMD=S△DON请求出此时点P的坐标.
解:(1)∵O(0,0),A(1,-3),B(-1,5)在曲线y=ax2+bx+c(a≠0)上
∴
解得a=1,b=-4,c=0
∴图中曲线的解析式是y=x2-4x
(2)抛物线y=x2-4x与x轴的另一个交点坐标为c(4,0),
连结EM,
∴⊙M的半径为2,即OM=DM=2
∵ED、EO都是⊙M的切线
∴EO=ED ∴△EOM≌△EDM
∴S四边形EOMD=2S△OME=2× OM?OE=2m
(3)设点D的坐标为(x0,y0)
∵S△DON=2S△DOM=2× OM×y0=2y0
∴S四边形ECMD=S△DON时即2m=2y0,m=y0
∵m=y0
∴ED∥x轴
又∵ED为切线
∴D(2,2)
∵点P在直线ED上,故设P(x,2)
∵P在圆中曲线y=x2-4x上
∴2=x2-4x 解得:x= =2±
∴P1(2+ ,0),P2(2- ,2)为所求.
五、归纳小结(学生归纳,老师点评)
本节课应掌握:
1.什么叫圆锥的母线.
2.会推导圆锥的侧面积和全面积公式并能灵活应用它们解决问题.
六、布置作业
1.教材P91
2.选用课时作业设计.
第二课时作业设计
一、选择题
1.圆锥的母线长为13cm,底面半径为5cm,则此圆锥的高线为( )
A.6cm B.8cm C.10cm D.12cm
2.在半径为50cm的圆形铁皮上剪去一块扇形铁皮,用剩余部分制作成一个底面直径为80cm,母线长为50cm的圆锥形烟囱帽,则剪去的扇形的圆心角度数为( )
A.228° B.144° C.72° D.36°
3.如图所示,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从点A出发绕侧面一周,再回到点A的最短的路线长是( )
A.6 B. C.3 D.3
二、填空题
1.母线长为L,底面半径为r的圆锥的表面积=_______.
2.矩形ABCD的边AB=5cm,AD=8cm,以直线AD为轴旋转一周,所得圆柱体的表面积是__________(用含 的代数式表示)
3.粮仓顶部是一个圆锥形,其底面周长为36m,母线长为8m,为防雨需在粮仓顶部铺上油毡,如果按用料的10%计接头的重合部分,那么这座粮仓实际需用________m2的油毡.
三、综合提高题
1.一个圆锥形和烟囱帽的底面直径是40cm,母线长是120cm,需要加工这样的一个烟囱帽,请你画一画:
(1)至少需要多少厘米铁皮(不计接头)
(2)如果用一张圆形铁皮作为材料来制作这个烟囱帽,那么这个圆形铁皮的半径
至少应是多少?
2.如图所示,已知圆锥的母线长AB=8cm,轴截面的顶角为60°,求圆锥全面积.
3.如图所示,一个几何体是从高为4m,底面半径为3cm的圆柱中挖掉一个圆锥后得到的,圆锥的底面就是圆柱的上底面,圆锥的顶点在圆柱下底面的圆心上,求这个几何体的表面积.
更多免费资源下载绿色圃中小学教育网http://www.lspjy.com 课件|教案|试卷|无需注册
3.6 三 视 图
〖教学目标〗
◆1、感受从不同方向观察同一物体可能看到不一样的结果,培养学生全面观察的能力.
◆2、能认别简单物体的三视图,了解主视图、俯视图、左视图和三视图的概念.
◆3、了解各个视图之间的尺寸关系;长对正、高平齐、宽相等.
◆4、会画直棱柱等简单几何体的三视图.
〖教学重点与难点〗
◆教学重点:三视图的画法.
◆教学难点:例2的组合体较复杂,画三视图有一定的难度.
〖教学准备〗
◆1、多媒体;
◆2、水瓶、杯子、乒乓球;
◆3、每位同学准备7个小正方体,一个圆锥,一个长方体
〖教学过程〗
一、创设问题情境。
(一) 从学生熟悉的古诗入手,引出课题。
大家看(屏幕投影庐山彩照)
师:横看成岭侧成峰,
远近高低各不同。
不识庐山真面目,
只缘身在此山中。
多美的山,多美的诗!
哪位同学能说说苏东坡是怎样观察庐山的吗?
这首诗教会了我们怎样观察物体(横看、侧看、近看、身处山中看)。这也是我们这节课将要学习的内容——从不同方向看 |
|