|
沙发
楼主 |
发表于 2011-12-28 18:00:14
|
只看该作者
5、(余数问题)1013除以一个两位数,余数是12,求出符合条件的所有的两位数。
解:余数为12,那么根据除法的性质,除数一定大于12;又有(1013-12)一定能被符合条件的数整除,我们首先计算出1001的除了1和其自身的所有的质因数:
11| 1001
13|91
7
那么符合条件的就在上述数字及其相互间的乘积中,可以得出两位数的有13、77、91。
第九天:
1.(燕尾定理)如图,长方形ABCD的面积是2平方厘米,EC=2DE,F是DG的中点,阴影部分的面积是多少平方厘米?
解:连接F、C两点,因为F是DG的中点,那么△CFG与△CFD的面积相等,并且等于△CDG面积的一半,即长方形ABCD面积的四分之一,又因为EC=2DE,那么△CFE的面积等于△EDF的两倍,所以阴影部分的面积即是:
2÷4×(5÷6) = 5/12
答:阴影部分的面积是十二分之五平方厘米。
2.(约数倍数问题)海港码头三只船,甲船往返需三天,乙船出海五天回,丙船七天返回岸,三船1996年元旦出海去,下次同遇码头边,恰在这一年的几日?请你动脑细心算。
解:3,5,7的最小公倍数是[3,5,7]=105;又1996年闰年,二月是29天,一月,三月都是31天,105-(31+29+31)=14,因此,下次三船同遇码头边在4月14日。
答:下次在码头相遇是在1996年的4月14日。
3.(周期问题)a ÷ 7化成小数后,小数点后至少多少个数字之和是2008,这时a是多少?
解:分母是7的分数化成小数的特点是,都是由123857这六个数字组成的无限循环小数,并且根据分子的不同,其排列顺序是首尾相接循环,只是位置不同。比如:
1÷7 = 0.142857 142857 142857…
2÷7 = 0.285714 285714 285713…
也就是说,不论分子是几,其小数表示的一个循环节中数字和是相同的,即每一循环节的数字和都是1+4+2+8+5+7=27,根据题意,2008中有74个27,且余10,那么循环节中相邻数字之和为10的只有2和8,即a=2。
答:根据题意,a是2。
4.(数字谜)、[4.2×5-(1÷2.5+9.1÷0.7)]÷0.04=100 改动上面算式中一个数的小数点的位置,使其成为一个正确的等式,那么被改动的数变为多少?
解:根据[4.2×5-(1÷2.5+9.1÷0.7)]÷0.04=100,得到[21-(0.4+13)]×25=100,只有一个小数,假设小数有问题,那么,(21-17)×25=100,0.4应为4,2.5应为0.25
答:把2.5改成0.25。
5.(操作问题)向电脑输入汉字,每个页面最多可输入1677个五号字。现在页面中有1个五号字,将它复制后粘贴到该页面,就得到2个字;再将这2个字复制后粘贴到该页面,就得到4个字。每次复制和粘贴为1次操作,要使整个页面都排满五号字,至少需要操作多少次?
解:根据题意,每次操作的结果字数都是前一次的2倍,2的10次方是1024,那么再复制粘贴一次就可超过1677,即需要11次。
第八天:
1、(燕尾定理)如图在△ABC中,AB=3BD,4BE=3EC,AE与CD相交于点F,其中四边形BDFE的面积为13cm²。求阴影三角形AFC的面积。
解:连接B、F两点,并设△BDF和△BFE的面积分别为a和b,则根据题意有:
a + b = 13
设所求阴影△AFC的面积为X,根据题意,有△ABF的面积为:3a;△BFC的面积为:7b÷3,根据蝴蝶定理,△AFC与△FBC的面积之比等于线段AD与DB的长度之比,所以有:
x :(7b÷3)= 2 : 1
同时△AFC与△ABF的面积之比等于线段EC与BE的长度之比,所以有:
x : 3a = 4 : 3,
由上述两个式子分别化简可以得到:
b = 3x÷14
a = x÷4,
那么上述两个式子左右分别相加即可得到
3x÷14 + x÷4 = b + a = 13
解方程得x=28。
答:阴影三角形AFC的面积是28cm²。
更多免费资源下载绿色圃中小学教育网httP://wWw.lSpjy.cOm
2.(组合问题)有13个队参加篮球比赛,比赛分两个组,第一组七个队,第二组六个队,各组先进行单循环赛(即每队都要与其它各队比赛一场),然后由各组的前两名共四个队再进行单循环决定冠亚军。问:共需要比赛多少场?
解:这是一道典型的组合问题,直接套用公式即可。
第一组单循环需要比赛:
C = 7×6 ÷ 2 = 21;
第二组单循环需要比赛:
C = 6×5 ÷ 2 = 15;
决赛需要
C = 4×3 ÷ 2 = 6,
因此共需要比赛21+15+6=42场。
答:共需要比赛42场。
3.(抽屉原理)请问从1,2,3,…,2008这2008个正整数中至多可以取出多少个数,使得取出的数中任意两数之和不能被这两数之差整除?(2008年国际小学数学竞赛(队际赛))
解:670。
对这些数每相邻的三个数分为一组,即(1,2,3) (4,5,6) (7,8,9) … (2005,2006,2007), 2008,共有669组,多一个2008,如果2008自己一个组,那么就共有670组。
如果取了671个数,根据抽屉原理,那么必然有一组中被取出了两个数,设为a 、b ,那么a-b 是 1 或者 2,并且a+b 与a-b同奇偶,于是a+b能被a-b整除 ,所以所取的数不能超过670个。 |
|