打破常规,巧妙解题
在解答应用题时,应该注重变通性思维。在分析题意时,如果能打破常规思维束缚,及时变换新的角度,进行分析思考,往往能探索出新的解题途径。
例1、一个高是10厘米的直圆柱,把它的底面分成若干个相等的扇形,再把圆柱切开拼成和它等底等高的正方体,求正方体与圆柱体表面积相差多少?
分析与解答:此题如果按常规思路分析,需要先分别求出正方体和圆柱体的表面积,然后再求出表面积相差多少。这样解答必然会陷入繁琐而复杂的计算中,如果打破常规思路的框框,换一个角度去思考,从圆柱体变为正方体的变化过程和变化结果去仔细对比分析,则会收到较好的效果。
因为圆柱体变为正方体后,正方体上下两个面正好是原来圆柱体的上下两个底面,正方体的前后两个侧面正好是原来圆柱体的侧面,而正方体左右两个侧面则是原来圆柱体没有的,因此只要求出正方体有左右两个侧面,问题就解决了。因为这个圆柱高为10厘米,把它的底面分成若干个相等的扇形,再把圆柱切开拼成了一个和它等底等高的正方体,因此可得,这个正方体的六个面均是棱长是10厘米的正方形,从而可求出正方体与圆柱体表面积相差:10×10×2=200(平方厘米)。
例2、五年级学生去植树,如果按1名女生和2名男生为一组,则女生分完后还剩8名男生;如果按1名女生和3名男生为一组,则男生分完后还剩10名女生。问参加植树的男、女生各有多少人?
分析与解答:因为按1 名女生和 2名男生为一组,女生分完男生还多10人,因此可知,男生人数是女生人数的2倍多8人。又因为按1名女生和3名男生为一组,男生分完后还剩10名女生,因此又可知,男生是女生的3倍少30(3×10)人。因此可得,女生人数为:(8+ 3×10)÷(3 -2)= 38(人)。男生人数则为:38×2 + 8 = 84(人)。或:(38 -10)×3 = 84(人)。
例3、甲、乙和丙三人去旅行,行程为75千米,甲与丙乘车以每小时25千米的速度前进,而乙则以每小时5千米的速度步行,经过一段时间后,丙下车改步行,每小时也行5千米,而甲则驾车返回将乙载上后掉头继续前进,且与丙同时到达目的地,问此次旅行时间为几小时?
分析与解答:假设甲和丙一直驾车到达目的地,所用时间为:75÷25 = 3(小时)。而乙一人步行到达目的地则要:75÷5 = 15(小时);这样可得三人共用的时间为:15 + 3 = 18(小时)。因此可知此次旅行所用的时间为:18÷3 = 6(小时)。
例4、某校组织学生参加植树活动,共有250人参加植树,计划每个男生植树15棵,每个女生植树12棵,后来抽调了男生的 20%去进行其它的劳动,其它同学都按计划完成了自己的任务。问同学们一共植树多少棵?
分析与解答:这题因为未曾告诉男女学生的具体人数,如按常规思路求解似乎缺少条件而无从下手。但认真分析这题可发现,题目中隐含着如下的数量关系:不管男生有多少人,抽出男生的20% ,男生实际植树的总棵数比计划植树的总棵数少20% ,因此也可理解为每个男生少植树计划植树棵数的 20%。由于每个男生计划植树15棵,少植 20% ,男生实际每人只植树:15×(1 - 20%)= 12(棵)。正好和女生每人植树的棵数相等,因此可得同学们一共植树的的棵数为:12×250 = 3000(棵)。
例5、某人从甲地出发,越过一座山到乙地去,整个路程共27千米,且都是上坡路和下坡路,共用了7小时,又知道他上山每小时行3千米,下山每小时行4.5千米,照这样计算,他由原路从乙地返回甲地要用几小时?
分析与解答:因为这个人是“原路返回”,因此可知道,他去时走的“上山”路正好是回来时要走的“下山”路,同样,他去时走的“下山”路正好是回来时要走的“上山”路。因此,从整体上看,他往返一次所走的“上山”路和“下山”路都恰好是27千米(分别各为一个全程)。
因此可得,他往返一次所花的总时间应当是:
27÷3+27÷4.5=9+6=15(小时)
而他去时共用了7小时,从往返一次所花的总时间减去去时的时间,即为由原路从乙地返回甲地用的时间,因此可得,他由原路从乙地返回甲地用的时间为:15-7=8(小时)。
例6、某工人计划加工一批零件,第一天生产了总数的10%,第二天生产的比余下的 1/9 多15个,还有65个没有生产,求第二天生产了几个零件?
分析与解答:因为第一天生产了总数的10%,因此可将这批零件平均分成10份,第一天生产了其中的1份,这时还剩下9(10-1)份,第二天生产的比余下的 多15个,因此可得第二天生产了其中的1份多15个,这时还剩下这批零件的8(9-1)份少65个,因此可得这批每份的零件的个数为:(65+15)÷8=10(个)。所以可得第二天生产的零件个数为:10+15=25(个)。 |