|
地板
楼主 |
发表于 2011-8-24 13:13:00
|
只看该作者
编写意图
教学解决求一个数的几分之几是多少的问题,以中国人均耕地面积与世界人均耕地面积这两个量的比较引入,接着编排了解决问题的几个基本步骤。先用线段图表示出问题的数量关系和要求的问题,然后根据线段图说说解决问题的思路,最后列式计算解决问题。与过去教材不同之处是简化了“想”的内容,仅作一个提示,意图是解决问题的思路与方法要通过学生自主探索与合作交流的方式得出。同时不给固定的思考模式,学生可以从不同的角度思考,用自己的语言表达出来,只要合理就应该肯定。例如学生不按分数乘法的意义思考,而从分数的意义理解,提出根据我国人均耕地面积仅占世界人均耕地面积的2/5,可以把世界人均耕地面积平均分成5份,取其中的2份,所以列式为2500÷5×2也是正确的。列式计算中也只要求填出最后得数,而不再出现计算的过程,因为这是前面学习的内容,不是本节要解决的问题。
最后针对计算的结果教材编排了进行国情教育的情节。
“做一做”安排一道与例题相同类型的题目,巩固这类问题的解决思路与方法。
教学建议
(1)结合线段图抓住“我国人均耕地面积仅占世界人均耕地面积的25”这个关键句子帮助学生理解题意,找到解题思路。组织学生讨论交流对这句话是如何理解的,通过讨论交流,使学生理解从这句话可以知道是把“我国人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是表示单位“1”的量,知道世界人均耕地面积为2500 m2,求我国人均耕地面积就是求2500的2/5是多少?
(2)在分析题意的基础上,讨论怎样列式,并说说列式的依据。
(3)列出算式,独立计算。
(4)交流计算结果。可出示世界与中国的人口总数,结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。
(5)通过“做一做”巩固解题的思路和方法。可以让学生先画线段图表示题意,说说自己是怎样想的?怎样列式?依据是什么?再独立解答。
2. 关于练习四的一些习题的说明和教学建议。
本练习配合例1而设计,主要是求一个数的几分之几是多少的实际问题。练习安排了一些与例题形式类似的题目,如2、3、7题,结合这些练习帮助学生进一步巩固解决这类问题的思路和方法。另外还安排了一些连续求一个数的几分之几是多少的题目,如4、5、9题,这类题与例1的思路是相同的,只是在求出一个数的几分之几是多少后,还要再求求出的数的几分之几是多少。所以第一步和第二步的解答中表示单位“1”的量是不同的,通过这类题目的练习,有利于加强学生对解决求一个数的几分之几是多少的问题数量关系的理解和分析,培养学生分析判断和推理能力。练习中,可借助线段图帮助学生分两步分析数量关系,抓住第一步求什么?谁是表示单位“1”的量;第二步求什么?谁是表示单位“1”的量;分步列出算式,计算出结果。在分步列式的基础上,引导学生列成连乘的综合算式。
第8题也是一步解决的求一个数的几分之几是多少的问题,只是变换了叙述题意及问题的形式。可引导学生讨论题意。明确仍然要抓住谁和谁比,把谁看作单位“1”,以选择条件进行计算。求出的是王明的最大负重量,再与王明的书包质量比较,得出结论。同时可以进行健康教育。第(2)问是解决学生身边的问题。
第10*题是思考题,与整数中解决求比一个数的几倍多(少)几的问题思路相同。列式为6670×(9/10)+297=6300(km)。
3. 例2。
编写意图
在例1理解和掌握了解决求一个数的几分之几是多少的问题的思路与方法的基础上,学习解决稍复杂的求一个数的几分之几是多少的问题。教材从绿化造林可以降低噪音这一环保问题引入,出示一幅情景图:公路上汽车的噪音有80分贝,经绿化隔离带后,测试噪音降低了1/8。提出问题:人现在听到的声音是多少分贝?这是整体与部分的比较关系,即知道一个部分量是总量的几分之几,求另一个部分量的问题。解答一般有两种方法,一种是先求出已知是总量几分之几的部分量,再用总量减去这个部分量,求出另一个部分量;另一种是先求出要求的部分量占总量的几分之几,再根据分数乘法的意义求出这个部分量是多少。教材呈现了这两种基本的计算方法,第一种方法用线段图表示出数量关系及解题的两个步骤,并以学生叙述解决思路的方式提示出先求什么。然后列出算式,让学生求出结果。第二种方法仅出示线段图,提示要找出先求什么,没有给出解答算式,意图要求学生自主探索解决问题。最后要求学生对两种思路进行比较,目的是通过比较,加深对两种思考方法的认识,同时培养学生比较、归纳的能力。
教学建议
(1)首先说明噪音对人的健康有害,绿化造林可以降低噪音,进行环境保护的教育,并说明测量声音强度的单位是“分贝”。然后出示情景图,让学生说说对图意的理解。根据图意提问“你能提出什么问题?”学生一般会提出“噪音降低了多少分贝?”这是上一个例题学习的内容,可让学生自己解答。也可能提出“现在听到的声音有多少分贝?”可就此引入新课。如果学生提不出这个问题,教师可以直接提出问题,导入新课。
(2)运用线段图帮助学生分析题意,寻找解题方法。可以出示没有标出数量的线段图(如下图)。
让学生说出图中各部分表示什么?哪些是已知的,哪些是要求的,哪一个是表示单位“1”的量,然后把线段图表示完整,如例2的第一个线段图。
(3)组织小组讨论,提出解决方法,再进行全班交流。一般情况下,学生都能提出第一种方法,教师要鼓励学生想出不同的方法。如果学生提不出,可以在线段图“现在?分贝”下加上( )/( )(如例2的第二个线段图)加以提示。
(4)在两种方法提出之后,让学生讨论它们有什么不同?使学生明确两种方法都是从整体与部分的关系入手,但第一种思路是从总量里减去一个部分量求出另一个部分量;第二种方法是求出部分量与总量的比较关系,再运用求一个数的几分之几是多少的方法求出这个部分量。学生叙述时,不一定这样概括,只要结合例题说明即可。根据解题策略多样化的要求,不要规定学生一定要用哪种方法或用两种方法解决。
(5)“做一做”的题目与例2形式相同,可以让学生在理解题意基础上先画出线段图,再交流一下自己是怎样想的?最后列式解答。
4. 例3。 |
|