|
沙发
楼主 |
发表于 2011-8-24 13:12:00
|
只看该作者
编写意图
例3在前面所学的成轴对称的平面图形的基础上,教学认识圆的对称性。使学生认识到圆是轴对称图形,且对称轴有无数条。
教学建议
教学时可分两个层次:一是让学生回顾以前学过的轴对称图形,复习对称特点及明确对称轴,然后说明以前学过的长方形、正方形等都有对称轴,这些图形都是轴对称图形;二是引导学生认识到圆也是轴对称图形,并且每条直径所在的直线都是圆的对称轴。这部分内容应让学生动手画一画,折一折,在实际操作中联系直径的含义来体会圆的对称轴有无数条这一特性。
“做一做”的第1题是总结性题目,在学过的轴对称图形中,等腰三角形和等腰梯形只有1条对称轴,长方形有2条对称轴,等边三角形有3条对称轴,正方形有4条对称轴,圆有无数条对称轴;第2题是根据对称轴画出轴对称图形的另一半,教学时应引导学生利用方格纸先描出对应点,再连线构成图形。
4. 关于练习十四中一些习题的说明和教学建议。
第2题,第3幅图是一个圆内切于一个正方形,则正方形的边长就是圆的直径,故r=5 cm;第4幅图以梯形的上底为直径作出的半圆内切于梯形的下底,则梯形的高即为半圆的半径,故d=7 cm。
第3题,使学生知道两端都在圆上的线段,直径是最长的一条。
第4题,这两种方法都是利用第3题的结论,通过移动尺子或用两个三角板同时夹住圆并垂直于刻度尺来测量出圆内“最长的线段”,也就是直径。
第6题,可先固定一点,然后以此为圆心,用长为5 m的绳子绕此点旋转一周即可画出。
第8题,最本质的区别在于圆是曲线图形,而三角形和四边形是直线构成的图形。
(一)教学目标
1. 认识圆,掌握圆的基本特征,理解直径与半径的相互关系;学会用圆规画圆。
2. 理解圆周率的意义,掌握圆周率的近似值,理解和掌握圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。
(二)教材说明和教学建议
教材说明
本单元教材主要内容有:认识圆、圆的周长和圆的面积等。
本单元是在学生掌握了直线图形的周长和面积计算,并且对圆已有初步认识的基础上进行教学的。从学习直线图形到学习曲线图形,不论是内容本身,还是研究问题的方法,都有所变化,教材通过对圆的研究,使学生初步认识研究曲线图形的基本方法,同时,也渗透了曲线图形与直线图形的内在联系。
教材先安排了圆的认识,通过认识圆心、半径和直径以及半径、直径长度间的关系等,使学生认识圆的基本特征。在此基础上,使学生掌握用圆规画圆的方法,进一步加深对圆的认识。教材还联系以前学过的轴对称图形和对称轴,说明圆是轴对称图形,且有无数条对称轴。
对于圆的周长和面积计算公式的教学,教材在编排上加强了启发性和探索性,注重让学生动手操作,使学生在实践活动中通过交流、思考来探究圆的周长和面积计算方法,逐步导出和掌握计算公式。对于圆的周长,教材是先让学生通过用线绕一绕,把圆放在直尺上滚一滚等方法来测量,然后再引导学生通过填表格,运用不完全归纳法来探寻周长与直径的比值的规律,从而引出圆周率的概念。编排圆的面积时,教材启发学生寻找解决问题的思路和方法,回忆以前用过的转化方法,从而把圆的面积转化为熟悉的直线图形的面积来计算。
教材还通过介绍圆周率的史料,渗透爱国主义教育。
教学建议
1. 加强动手操作,培养学生自主探索能力。
教材里安排了很多活动让学生探究圆的基本特征,故实际教学时,教师应注意让学生动手操作,通过画一画、剪一剪、围一围等多种方式,帮助学生认识圆的基本特征,探讨圆的周长和面积计算公式。
比如在教学圆的认识时,当学生画好圆后,教师可引导学生进行对折,从而导出圆心、半径和直径等概念,再通过测量来发现半径、直径的特点及相互关系;探究圆的周长时,则可让学生采用围一围、滚一滚的方法先测出周长,在此基础上再引导学生探究周长与直径的关系;探索圆的面积时,教师可利用书中的附页或备好的学具,引导学生动手剪切、拼贴,从而“化圆为方”,得出圆面积的计算方法。
实际教学时,教师不应把学生的动手操作简单地作为活动目的,而应合理引导学生在操作的基础上,自主探索和发现圆的有关特性。
2. 注重知识的前后联系,体现“化曲为直”“化圆为方”的转化思想。
圆是一种曲线图形,和以前学的直线图形在性质上有很大的不同,但在研究方法上,联系又很紧密,故教学时应注意引导学生合理应用转化思想,将圆转化成以前学过的直线图形来研究。如在研究圆的面积时,教师可先让学生回顾:以前在研究多边形的面积时,主要采用了割补、拼组等方法,将多边形的面积转化成更熟悉和更简单的图形来解决,那么,这里是否也可以仿此思路把圆的面积采用割补等方式转化成熟悉的图形来计算呢?
教学时,还要让学生认识到转化是一种很重要的数学思想方法,在解决日常问题以及在科学研究中,人们常常就是把复杂转化为简单、未知转化为已知、抽象转化为具体等方式来处理的。
3. 本单元可用8课时进行教学。 |
|