30°,45°,60°角的三角比
一、课前预习 (5分钟训练)
1.在△ABC中,∠C=90°,AC=1,AB=,则∠B的度数是( )
A.30° B.45° C.60° D.90°
2.∠B是Rt△ABC的一个内角,且sinB=,则cosB等于( )
A. B. C. D.
3.计算-2sin60°cos45°+3tan30°sin45°=_______________.
4.计算cos60°sin30°-tan60°tan45°+(cos30°)2=___________________.
二、课中强化(10分钟训练)
1.在△ABC中,∠C=90°,AC=1,BC=,则∠B的度数是( )
A.30° B.45° C.60° D.90°
2.已知α为锐角,tanα=,则cosα等于( )
A. B. C. D.
3.若|-2sinα|+(tanβ-1)2=0,则锐角α=____________,β=______________.
4.如图,已知△ABC中,∠C=90°,∠A=60°,a=15,根据定义求∠A,∠B的三角函数值.
5.如图,沿倾斜角为30°的山坡植树,要求相邻两棵树的水平距离AC为2 m,那么相邻两棵树的斜坡距离AB约为多少米?(精确到0.1 m,可能用到的数据≈1.41,≈1.73)
三、课后巩固(30分钟训练)
1.等腰梯形的上底为2 cm,下底为4 cm,面积为 cm2,则较小的底角的余弦值为( )
A. B. C D.
2.反比例函数y=的图象经过点(tan45°,cos60°),则k的值是_____.
3.已知△ABC中,∠C=90°,a=,∠B=30°,则c=_____________.
4.已知Rt△ABC中,∠C=90°,∠A=60°,a-b=2,则c=________________.
5.如图,在高为2米,坡角为30°的楼梯表面铺地毯,地毯的长度至少需_______米.(精确到0.1米)
6.如图,在△ABC中,∠B=30°,sinC=,AC=10,求AB的长.
7.如图,已知在Rt△ABC中,∠C=90°,∠A=30°,D在AC上且∠BDC=60°,AD=20,求BC.
参考答案
一、课前预习 (5分钟训练)
1.解:∵sinB=,∴∠B=45°.
答案:B
2. 解:由sinB=得∠B=60°,
∴cosB=.
答案:C
3.解:-2sin60°cos45°+3tan30°sin45°
=
答案:
4.解:cos60°sin30°-tan60°tan45°+(cos30°)2
=×-×1+()2=1-.
答案:1-
二、课中强化(10分钟训练)
1.解:tanB=,∴∠B=30°.
答案:A
2. 解析:由tanα=求得α=60°,故cosα=.
答案:A
3.解析:由题意得sinα=,tanβ=1,
∴α=60°,β=45°.
答案:60° 45°
4.解:在Rt△ABC中,∠B=90°-∠A=90°-60°=30°.
b=c,c2=a2+b2=152+c2.
∴c2=300,即c=.
∴b=.
∴sinA=,cosA==,
tanA=,sinB==,
cosB=,,tanB=
5.解:∵∠BCA=90°,∴cos∠BAC=.
∵∠BAC=30°,AC=2,
∴AB=≈2.3.
答:相邻两棵树的斜坡距离AB约为2.3 m.
三、课后巩固(30分钟训练)
1. 解析:如图,根据题意,可知AE=2×,Rt△ABE中,AE=,BE=1,
∴tanB=.∴B=60°.∴cosB=.
答案:D
2.解析:点(tan45°,cos60°)的坐标即为(1,),y=经过此点,所以满足=.∴k=.
答案:
3.解析:由cosB=,得c==10.
答案:10
4.解析:tanA,又a-b=2,
∴a=+3,c==2+.
答案:2+
5.解析:地毯的长度是两条直角边的和,另一条直角边为=,∴地毯的长度至少为2+≈5.5(米).
答案:5.5
6.解:作AD⊥BC,垂足为点D,在Rt△ADC中,AD=AC·sinC=8,
在Rt△ADB中,AB==16.
|