参考答案
一、选择题:(每小题4分,共20分)
BCBAD
二、填空题:(每小题4分,共20分)
6.3, 7.75°, 8.2:9, 9.2cm2, 10.(1-)。
三、解答题:(每小题8分,共40分)
11.证明:连结AF,
∵AB中直径,CF⊥AB,
∴,
∴∠ADF=∠AFE,
∵A、D、E、F四点共圆,
∴∠CED=∠CAF=180°-∠DEF,
同理∠CDE=∠AFE,
∴∠CDE=∠ADF,
∴△CDE∽△FDA,
∴,∴CD·AD=DE·DF。
12.解:模型甲用料多一点。
理由:模型甲用料(2+6)米,模型乙用料(2+4)米,
∵4=,而6=,
∴2+6>2+4.
∴模型甲用料多一点。
13.解:设分别以AB、BC、CA为边长的正方形的内切圆面积分别为S1,S2,S3,
则S1==AB2,S2==BC2,S3==AC2
∵△ABC直角三角形,∴AB2=BC2+AC2.
∴AB2=BC2+AC2.
即S1=S2+S3。
14.解:连结EA,则Rt△ADE中,DE=,AE=,
∴DA=
∴OD=2,∴OA=OD-AD=1,
∴点A的坐标为(-1,0),
再连结EB,
∵∠DEA=∠B, ∠EDA=∠BDE,
∴,∴DB==5,
∴OB=DB-OD=5-2=3, ∴点B坐标为(3,0)。
15.证明:延长CD,使DE=BD,连结AE,
∵四边形ABCD内接于圆,
∴∠ADE=∠ABC=180°-∠ADC,
∵AB=AC,∴∠ABC=∠ACB,
∵∠ADB=∠ACB,∴∠ADB=∠ADE,
∵AD=AD
∴△ABD≌△AED,∴AB=AE,
∴AC=AE,
∵∠ABD=∠ACD=60°,
∴△ACE是等边三角形,
∴CE=AE=AB,
∵CE=ED+DC=BD+CD,∴AB=BD+CD。
16.解:DF与⊙O相切。
证明:连结OM,
∵CD=CO,∴∠COD=∠CDO,
∵CE切⊙O于M,∴OM⊥CE,
∴∠C+∠COM=90°,
∵EO⊥AC,∴∠C+∠E=90°,
∴∠COM=∠E,
∵∠CDO=∠E+∠DOF, ∠COD=∠COM+∠DOM.
∴∠DOF=∠DOM,
∵OF=OM,OD=OD, ∴△OFD≌△OMD,
∴∠OFD=∠OMD=90°, ∴DF⊥OF, ∴DF与⊙O相切。
17.解:扇形的圆心角应为120°。
(1)当扇形的圆心角与正三角形的中心角重合时,显然△ABC与扇形重叠部分的面积等于△ABC的面积的。
(2)当扇形的圆心角与正三角形的中心角不重合时,连结OA、OB,设OD交AB于F,OE交BC于G,
∵O是正三角形的中心,
∴OA=OB,∠OAF=∠OBG,∠AOB=120°,
∴∠AOF=120°-∠BOF,∠BOG=∠DOE-∠BOF=120°-∠BOF,
∴∠AOF=∠BOG,
∴△AOF≌△BOG,
S四边形OFBG=S△OAB=S△ABC。
即扇形与△ABC的重叠部分的面积总等于△ABC的面积的。
由(1)(2)可知,当扇形的圆心角为120°时,△ABC与扇形重叠部分的面积总等于△ABC的面积的。
|