绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

查看: 4448|回复: 1
打印 上一主题 下一主题

2019山东省济宁市中考数学试题及解析word免费下载

[复制链接]
跳转到指定楼层
楼主
发表于 2020-4-17 21:45:38 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
           此套北师大版八年级数学下册教学设计及反思word下载绿色圃中小学教育网整理,供大家免费使用下载转载前请注明出处 部分图片、表格、公式、特殊符号无法显示,需要下载的老师、家长们可以到本帖子二楼(往下拉)下载word压缩文件附件使用!
        如有疑问,请联系网站底部工作人员,将第一时间为您解决问题!

文件预览:
2019年山东省济宁市中考数学试卷

一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求
1.(3分)下列四个实数中,最小的是(  )
A.﹣         B.﹣5        C.1        D.4
2.(3分)如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4的度数是(  )

A.65°        B.60°        C.55°        D.75°
3.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是(  )
A.         B.         C.         D.
4.(3分)以下调查中,适宜全面调查的是(  )
A.调查某批次汽车的抗撞击能力       
B.调查某班学生的身高情况       
C.调查春节联欢晚会的收视率       
D.调查济宁市居民日平均用水量
5.(3分)下列计算正确的是(  )
A. =﹣3        B. =         C. =±6        D.﹣ =﹣0.6
6.(3分)世界文化遗产“三孔”景区已经完成5G基站布设,“孔夫子家”自此有了5G网络.5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G网络比4G网络快45秒,求这两种网络的峰值速率.设4G网络的峰值速率为每秒传输x兆数据,依题意,可列方程是(  )
A. ﹣ =45        B. ﹣ =45       
C. ﹣ =45        D. ﹣ =45
7.(3分)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是(  )

A.         B.        
C.         D.
8.(3分)将抛物线y=x2﹣6x+5向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是(  )
A.y=(x﹣4)2﹣6        B.y=(x﹣1)2﹣3        C.y=(x﹣2)2﹣2        D.y=(x﹣4)2﹣2
9.(3分)如图,点A的坐标是(﹣2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′B′C′.若反比例函数y= 的图象恰好经过A′B的中点D,则k的值是(  )

A.9        B.12        C.15        D.18
10.(3分)已知有理数a≠1,我们把 称为a的差倒数,如:2的差倒数是 =﹣1,﹣1的差倒数是 = .如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+…+a100的值是(  )
A.﹣7.5        B.7.5        C.5.5        D.﹣5.5
二、填空题:本大题共5小题,每小题3分,共15分。
11.(3分)已知x=1是方程x2+bx﹣2=0的一个根,则方程的另一个根是     .
12.(3分)如图,该硬币边缘镌刻的正九边形每个内角的度数是     .

13.(3分)已知点P(x,y)位于第四象限,并且x≤y+4(x,y为整数),写出一个符合上述条件的点P的坐标     .
14.(3分)如图,O为Rt△ABC直角边AC上一点,以OC为半径的⊙O与斜边AB相切于点D,交OA于点E,已知BC= ,AC=3.则图中阴影部分的面积是     .

15.(3分)如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,则不等式ax2+mx+c>n的解集是     .

三、解答题:本大题共7小题,共55分,
16.(6分)计算:6sin60°﹣ +( )0+| ﹣2018|
17.(7分)某校为了解学生课外阅读情况,就学生每周阅读时间随机调查了部分学生,调查结果按性别整理如下:
女生阅读时间人数统计表
阅读时间t(小时)        人数        占女生人数百分比
0≤t<0.5        4        20%
0.5≤t<1        m        15%
1≤t<1.5        5        25%
1.5≤t<2        6        n
2≤t<2.5        2        10%
根据图表解答下列问题:
(1)在女生阅读时间人数统计表中,m=     ,n=     ;
(2)此次抽样调查中,共抽取了     名学生,学生阅读时间的中位数在     时间段;
(3)从阅读时间在2~2.5小时的5名学生中随机抽取2名学生参加市级阅读活动,恰好抽到男女生各一名的概率是多少?

18.(7分)如图,点M和点N在∠AOB内部.
(1)请你作出点P,使点P到点M和点N的距离相等,且到∠AOB两边的距离也相等(保留作图痕迹,不写作法);
(2)请说明作图理由.

19.(8分)小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y(km)与小王的行驶时间x(h)之间的函数关系.
请你根据图象进行探究:
(1)小王和小李的速度分别是多少?
(2)求线段BC所表示的y与x之间的函数解析式,并写出自变量x的取值范围.

20.(8分)如图,AB是⊙O的直径,C是⊙O上一点,D是 的中点,E为OD延长线上一点,且∠CAE=2∠C,AC与BD交于点H,与OE交于点F.
(1)求证:AE是⊙O的切线;
(2)若DH=9,tanC= ,求直径AB的长.

21.(8分)阅读下面的材料:
如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2,
(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;
(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.
例题:证明函数f(x)= (x>0)是减函数.
证明:设0<x1<x2,
f(x1)﹣f(x2)= ﹣ = = .
∵0<x1<x2,
∴x2﹣x1>0,x1x2>0.
∴ >0.即f(x1)﹣f(x2)>0.
∴f(x1)>f(x2).
∴函数f(x)═ (x>0)是减函数.
根据以上材料,解答下面的问题:
已知函数f(x)= +x(x<0),
f(﹣1)= +(﹣1)=0,f(﹣2)= +(﹣2)=﹣
(1)计算:f(﹣3)=     ,f(﹣4)=     ;
(2)猜想:函数f(x)= +x(x<0)是     函数(填“增”或“减”);
(3)请仿照例题证明你的猜想.
22.(11分)如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.
(1)求线段CE的长;
(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM,设AM=x,DN=y.
①写出y关于x的函数解析式,并求出y的最小值;
②是否存在这样的点M,使△DMN是等腰三角形?若存在,请求出x的值;若不存在,请说明理由.

2019年山东省济宁市中考数学试卷
参考答案与试题解析
一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求
1.(3分)下列四个实数中,最小的是(  )
A.﹣         B.﹣5        C.1        D.4
【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.
【解答】解:根据实数大小比较的方法,可得
﹣5<﹣ <1<4,
所以四个实数中,最小的数是﹣5.
故选:B.
【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.
2.(3分)如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4的度数是(  )

A.65°        B.60°        C.55°        D.75°
【分析】首先证明a∥b,推出∠4=∠5,求出∠5即可.
【解答】解:∵∠1=∠2,
∴a∥b,
∴∠4=∠5,
∵∠5=180°﹣∠3=55°,
∴∠4=55°,
故选:C.

【点评】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
3.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是(  )
A.         B.         C.         D.
【分析】直接利用轴对称图形和中心对称图形的概念求解.
【解答】解:A、既是中心对称图形也是轴对称图形,故此选项正确;
B、不是轴对称图形,也不是中心对称图形,故此选项错误;
C、是轴对称图形,不是中心对称图形,故此选项错误;
D、不是轴对称图形,是中心对称图形,故此选项错误.
故选:A.
【点评】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.
4.(3分)以下调查中,适宜全面调查的是(  )
A.调查某批次汽车的抗撞击能力       
B.调查某班学生的身高情况       
C.调查春节联欢晚会的收视率       
D.调查济宁市居民日平均用水量
【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【解答】解:A、调查某批次汽车的抗撞击能力,适合抽样调查,故A选项错误;
B、调查某班学生的身高情况,适合全面调查,故B选项正确;
C、调查春节联欢晚会的收视率,适合抽样调查,故C选项错误;
D、调查济宁市居民日平均用水量,适于抽样调查,故D选项错误.
故选:B.
【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
5.(3分)下列计算正确的是(  )
A. =﹣3        B. =         C. =±6        D.﹣ =﹣0.6
【分析】直接利用二次根式的性质以及立方根的性质分析得出答案.
【解答】解:A、 =3,故此选项错误;
B、 =﹣ ,故此选项错误;
C、 =6,故此选项错误;
D、﹣ =﹣0.6,正确.
故选:D.
【点评】此题主要考查了二次根式的性质以及立方根的性质,正确掌握相关性质是解题关键.
6.(3分)世界文化遗产“三孔”景区已经完成5G基站布设,“孔夫子家”自此有了5G网络.5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G网络比4G网络快45秒,求这两种网络的峰值速率.设4G网络的峰值速率为每秒传输x兆数据,依题意,可列方程是(  )
A. ﹣ =45        B. ﹣ =45       
C. ﹣ =45        D. ﹣ =45
【分析】直接利用5G网络比4G网络快45秒得出等式进而得出答案.
【解答】解:设4G网络的峰值速率为每秒传输x兆数据,依题意,可列方程是:
﹣ =45.
故选:A.
【点评】此题主要考查了由实际问题抽象出分式方程,正确得出等式是解题关键.
7.(3分)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是(  )

A.         B.        
C.         D.
【分析】由平面图形的折叠及几何体的展开图解题,注意带图案的一个面不是底面.
【解答】解:选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;
选项B能折叠成原几何体的形式;
选项D折叠后下面带三角形的面与原几何体中的位置不同.
故选:B.
【点评】本题主要考查了几何体的展开图.解题时勿忘记正四棱柱的特征及正方体展开图的各种情形.注意做题时可亲自动手操作一下,增强空间想象能力.
8.(3分)将抛物线y=x2﹣6x+5向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是(  )
A.y=(x﹣4)2﹣6        B.y=(x﹣1)2﹣3        C.y=(x﹣2)2﹣2        D.y=(x﹣4)2﹣2
【分析】先把y=x2﹣6x+5配成顶点式,得到抛物线的顶点坐标为(3,﹣4),再把点(3,﹣4)向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,﹣2),然后根据顶点式写出平移后的抛物线解析式.
【解答】解:y=x2﹣6x+5=(x﹣3)2﹣4,即抛物线的顶点坐标为(3,﹣4),
把点(3,﹣4)向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,﹣2),
所以平移后得到的抛物线解析式为y=(x﹣4)2﹣2.
故选:D.
【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
9.(3分)如图,点A的坐标是(﹣2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′B′C′.若反比例函数y= 的图象恰好经过A′B的中点D,则k的值是(  )

A.9        B.12        C.15        D.18
【分析】作A′H⊥y轴于H.证明△AOB≌△BHA′(AAS),推出OA=BH,OB=A′H,求出点A′坐标,再利用中点坐标公式求出点D坐标即可解决问题.
【解答】解:作A′H⊥y轴于H.

∵∠AOB=∠A′HB=∠ABA′=90°,
∴∠ABO+∠A′BH=90°,∠ABO+∠BAO=90°,
∴∠BAO=∠A′BH,
∵BA=BA′,
∴△AOB≌△BHA′(AAS),
∴OA=BH,OB=A′H,
∵点A的坐标是(﹣2,0),点B的坐标是(0,6),
∴OA=2,OB=6,
∴BH=OA=2,A′H=OB=6,
∴OH=4,
∴A′(6,4),
∵BD=A′D,
∴D(3,5),
∵反比例函数y= 的图象经过点D,
∴k=15.
故选:C.
【点评】本题考查反比例函数图形上的点的坐标特征,坐标与图形的变化﹣旋转等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.
10.(3分)已知有理数a≠1,我们把 称为a的差倒数,如:2的差倒数是 =﹣1,﹣1的差倒数是 = .如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+…+a100的值是(  )
A.﹣7.5        B.7.5        C.5.5        D.﹣5.5
【分析】求出数列的前4个数,从而得出这个数列以﹣2, , 依次循环,且﹣2+ + =﹣ ,再求出这100个数中有多少个周期,从而得出答案.
【解答】解:∵a1=﹣2,
∴a2= = ,a3= = ,a4= =﹣2,……
∴这个数列以﹣2, , 依次循环,且﹣2+ + =﹣ ,
∵100÷3=33…1,
∴a1+a2+…+a100=33×(﹣ )﹣2=﹣ =﹣7.5,
故选:A.
【点评】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.
二、填空题:本大题共5小题,每小题3分,共15分。
11.(3分)已知x=1是方程x2+bx﹣2=0的一个根,则方程的另一个根是 ﹣2 .
【分析】根据根与系数的关系得出x1x2= =﹣2,即可得出另一根的值.
【解答】解:∵x=1是方程x2+bx﹣2=0的一个根,
∴x1x2= =﹣2,
∴1×x2=﹣2,
则方程的另一个根是:﹣2,
故答案为﹣2.
【点评】此题主要考查了一元二次方程根与系数的关系,得出两根之积求出另一根是解决问题的关键.
12.(3分)如图,该硬币边缘镌刻的正九边形每个内角的度数是 140° .

【分析】先根据多边形内角和定理:180°•(n﹣2)求出该多边形的内角和,再求出每一个内角的度数.
【解答】解:该正九边形内角和=180°×(9﹣2)=1260°,
则每个内角的度数= =140°.
故答案为:140°.
【点评】本题主要考查了多边形的内角和定理:180°•(n﹣2),比较简单,解答本题的关键是直接根据内角和公式计算可得内角和.
13.(3分)已知点P(x,y)位于第四象限,并且x≤y+4(x,y为整数),写出一个符合上述条件的点P的坐标 (1,﹣2)(答案不唯一) .
【分析】直接利用第四象限内点的坐标特点得出x,y的取值范围,进而得出答案.
【解答】解:∵点P(x,y)位于第四象限,并且x≤y+4(x,y为整数),
∴x>0,y<0,
∴当x=1时,1≤y+4,
解得:0>y≥﹣3,
∴y可以为:﹣2,
故写一个符合上述条件的点P的坐标可以为:(1,﹣2)(答案不唯一).
故答案为:(1,﹣2)(答案不唯一).
【点评】此题主要考查了点的坐标,正确把握横纵坐标的符号是解题关键.
14.(3分)如图,O为Rt△ABC直角边AC上一点,以OC为半径的⊙O与斜边AB相切于点D,交OA于点E,已知BC= ,AC=3.则图中阴影部分的面积是   .

【分析】首先利用勾股定理求出AB的长,再证明BD=BC,进而由AD=AB﹣BD可求出AD的长度;利用特殊角的锐角三角函数可求出∠A的度数,则圆心角∠DOA的度数可求出,在直角三角形ODA中求出OD的长,最后利用扇形的面积公式即可求出阴影部分的面积.
【解答】解:在Rt△ABC中,∵BC= ,AC=3.
∴AB= =2 ,
∵BC⊥OC,
∴BC是圆的切线,
∵⊙O与斜边AB相切于点D,
∴BD=BC,
∴AD=AB﹣BD=2 ﹣ = ;
在Rt△ABC中,∵sinA= = = ,
∴∠A=30°,
∵⊙O与斜边AB相切于点D,
∴OD⊥AB,
∴∠AOD=90°﹣∠A=60°,
∵ =tanA=tan30°,
∴ = ,
∴OD=1,
∴S阴影= = .
故答案是: .

【点评】本题考查了切线的性质定理、切线长定理以及勾股定理的运用,熟记和圆有关的各种性质定理是解题的关键.
15.(3分)如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,则不等式ax2+mx+c>n的解集是 x<﹣3或x>1 .

【分析】观察两函数图象的上下位置关系,即可得出结论.
【解答】解:∵抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,
∴﹣m+n=p,3m+n=q,
∴抛物线y=ax2+c与直线y=﹣mx+n交于P(1,p),Q(﹣3,q)两点,
观察函数图象可知:当x<﹣3或x>1时,直线y=﹣mx+n在抛物线y=ax2+bx+c的下方,
∴不等式ax2+mx+c>n的解集为x<﹣3或x>1.
故答案为:x<﹣3或x>1.

【点评】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.
三、解答题:本大题共7小题,共55分,
16.(6分)计算:6sin60°﹣ +( )0+| ﹣2018|
【分析】本题涉及零指数幂、绝对值、特殊角的三角函数值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
【解答】解:原式=6× ,
=2019.
【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
17.(7分)某校为了解学生课外阅读情况,就学生每周阅读时间随机调查了部分学生,调查结果按性别整理如下:
女生阅读时间人数统计表
阅读时间t(小时)        人数        占女生人数百分比
0≤t<0.5        4        20%
0.5≤t<1        m        15%
1≤t<1.5        5        25%
1.5≤t<2        6        n
2≤t<2.5        2        10%
根据图表解答下列问题:
(1)在女生阅读时间人数统计表中,m= 3 ,n= 30% ;
(2)此次抽样调查中,共抽取了 50 名学生,学生阅读时间的中位数在 1≤t<1.5 时间段;
(3)从阅读时间在2~2.5小时的5名学生中随机抽取2名学生参加市级阅读活动,恰好抽到男女生各一名的概率是多少?

【分析】(1)由0≤t<0.5时间段的人数及其所占百分比可得女生人数,再根据百分比的意义求解可得;
(2)将男女生人数相加可得总人数,再根据中位数的概念求解可得;
(3)利用列举法求得所有结果的个数,然后利用概率公式即可求解.
【解答】解:(1)女生总人数为4÷20%=20(人),
∴m=20×15%=3,n= ×100%=30%,
故答案为:3,30%;

(2)学生总人数为20+6+5+12+4+3=50(人),
这组数据的中位数是第25、26个数据的平均数,而第25、26个数据均落在1≤t<1.5范围内,
∴学生阅读时间的中位数在1≤t<1.5时间段,
故答案为:50,1≤t<1.5;

(3)学习时间在2~2.5小时的有女生2人,男生3人.

共有20种可能情况,则恰好抽到男女各一名的概率是 = .
【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
18.(7分)如图,点M和点N在∠AOB内部.
(1)请你作出点P,使点P到点M和点N的距离相等,且到∠AOB两边的距离也相等(保留作图痕迹,不写作法);
(2)请说明作图理由.

【分析】(1)根据角平分线的作法、线段垂直平分线的作法作图;
(2)根据角平分线的性质、线段垂直平分线的性质解答.
【解答】解:(1)如图,点P到点M和点N的距离相等,且到∠AOB两边的距离也相等;
(2)理由:角的平分线上的点到角的两边的距离相等、直平分线上的点到线段两端点的距离相等.

【点评】本题考查的是复杂作图、角平分线的性质、线段垂直平分线的性质,掌握基本作图的一般步骤、角平分线的性质、线段垂直平分线的性质是解题的关键.
19.(8分)小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y(km)与小王的行驶时间x(h)之间的函数关系.
请你根据图象进行探究:
(1)小王和小李的速度分别是多少?
(2)求线段BC所表示的y与x之间的函数解析式,并写出自变量x的取值范围.

【分析】(1)根据题意和函数图象中的数据可以分别求得王和小李的速度;
(2)根据(1)中的结果和图象中的数据可以求得点C的坐标,从而可以解答本题.
【解答】解:(1)由图可得,
小王的速度为:30÷3=10km/h,
小李的速度为:(30﹣10×1)÷1=20km/h,
答:小王和小李的速度分别是10km/h、20km/h;
(2)小李从乙地到甲地用的时间为:30×20=1.5h,
当小李到达甲地时,两人之间的距离为:10×1.5=15km,
∴点C的坐标为(1.5,15),
设线段BC所表示的y与x之间的函数解析式为y=kx+b,
,得 ,
即线段BC所表示的y与x之间的函数解析式是y=30x﹣30(1≤x≤1.5).
【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
20.(8分)如图,AB是⊙O的直径,C是⊙O上一点,D是 的中点,E为OD延长线上一点,且∠CAE=2∠C,AC与BD交于点H,与OE交于点F.
(1)求证:AE是⊙O的切线;
(2)若DH=9,tanC= ,求直径AB的长.

【分析】(1)根据垂径定理得到OE⊥AC,求得∠AFE=90°,求得∠EAO=90°,于是得到结论;
(2)根据等腰三角形的性质和圆周角定理得到∠ODB=∠C,求得tanC=tan∠ODB= = ,设HF=3x,DF=4x,根据勾股定理得到DF= ,HF= ,根据相似三角形的性质得到CF= = ,求得AF=CF= ,设OA=OD=x,根据勾股定理即可得到结论.
【解答】解:(1)∵D是 的中点,
∴OE⊥AC,
∴∠AFE=90°,
∴∠E+∠EAF=90°,
∵∠AOE=2∠C,∠CAE=2∠C,
∴∠CAE=∠AOE,
∴∠E+∠AOE=90°,
∴∠EAO=90°,
∴AE是⊙O的切线;
(2)∵∠C=∠B,
∵OD=OB,
∴∠B=∠ODB,
∴∠ODB=∠C,
∴tanC=tan∠ODB= = ,
∴设HF=3x,DF=4x,
∴DH=5x=9,
∴x= ,
∴DF= ,HF= ,
∵∠C=∠FDH,∠DFH=∠CFD,
∴△DFH∽△CFD,
∴ = ,
∴CF= = ,
∴AF=CF= ,
设OA=OD=x,
∴OF=x﹣ ,
∵AF2+OF2=OA2,
∴( )2+(x﹣ )2=x2,
解得:x=10,
∴OA=10,
∴直径AB的长为20.

【点评】本题考查了切线的判定和性质,圆周角定理,垂径定理,相似三角形的判定和性质,正确的识别图形是解题的关键.
21.(8分)阅读下面的材料:
如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2,
(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;
(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.
例题:证明函数f(x)= (x>0)是减函数.
证明:设0<x1<x2,
f(x1)﹣f(x2)= ﹣ = = .
∵0<x1<x2,
∴x2﹣x1>0,x1x2>0.
∴ >0.即f(x1)﹣f(x2)>0.
∴f(x1)>f(x2).
∴函数f(x)═ (x>0)是减函数.
根据以上材料,解答下面的问题:
已知函数f(x)= +x(x<0),
f(﹣1)= +(﹣1)=0,f(﹣2)= +(﹣2)=﹣
(1)计算:f(﹣3)= ﹣  ,f(﹣4)= ﹣  ;
(2)猜想:函数f(x)= +x(x<0)是 增 函数(填“增”或“减”);
(3)请仿照例题证明你的猜想.
【分析】(1)根据题目中函数解析式可以解答本题;
(2)由(1)结论可得;
(3)根据题目中例子的证明方法可以证明(1)中的猜想成立.
【解答】解:(1)∵f(x)= +x(x<0),
∴f(﹣3)= ﹣3=﹣ ,f(﹣4)= ﹣4=﹣
故答案为:﹣ ,﹣
(2)∵﹣4<﹣3,f(﹣4)>f(﹣3)
∴函数f(x)= +x(x<0)是增函数
故答案为:增
(3)设x1<x2<0,
∵f(x1)﹣f(x2)= +x1﹣ ﹣x2=(x1﹣x2)(1﹣ )
∵x1<x2<0,
∴x1﹣x2<0,x1+x2<0,
∴f(x1)﹣f(x2)<0
∴f(x1)<f(x2)
∴函数f(x)= +x(x<0)是增函数
【点评】本题考查反比例函数图象上的坐标特征、反比例函数的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用反比例函数的性质解答.
22.(11分)如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.
(1)求线段CE的长;
(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM,设AM=x,DN=y.
①写出y关于x的函数解析式,并求出y的最小值;
②是否存在这样的点M,使△DMN是等腰三角形?若存在,请求出x的值;若不存在,请说明理由.

【分析】(1)由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8﹣x.在Rt△ECF中,利用勾股定理构建方程即可解决问题.
(2)①证明△ADM∽△GMN,可得 = ,由此即可解决问题.
②存在.有两种情形:如图3﹣1中,当MN=MD时.如图3﹣2中,当MN=DN时,作MH⊥DG于H.分别求解即可解决问题.
【解答】解:(1)如图1中,

∵四边形ABCD是矩形,
∴AD=BC=10,AB=CD=8,
∴∠B=∠BCD=90°,
由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8﹣x.
在Rt△ABF中,BF= =6,
∴CF=BC﹣BF=10﹣6=4,
在Rt△EFC中,则有:(8﹣x)2=x2+42,
∴x=3,
∴EC=3.

(2)①如图2中,

∵AD∥CG,
∴ = ,
∴ = ,
∴CG=6,
∴BG=BC+CG=16,
在Rt△ABG中,AG= =8 ,
在Rt△DCG中,DG= =10,
∵AD=DG=10,
∴∠DAG=∠AGD,
∵∠DMG=∠DMN+∠NMG=∠DAM+∠ADM,∠DMN=∠DAM,
∴∠ADM=∠NMG,
∴△ADM∽△GMN,
∴ = ,
∴ = ,
∴y= x2﹣ x+10.
当x=4 时,y有最小值,最小值=2.

②存在.有两种情形:如图3﹣1中,当MN=MD时,

∵∠MDN=∠GMD,∠DMN=∠DGM,
∴△DMN∽△DGM,
∴ = ,
∵MN=DM,
∴DG=GM=10,
∴x=AM=8 ﹣10.
如图3﹣2中,当MN=DN时,作MH⊥DG于H.
∵MN=DN,
∴∠MDN=∠DMN,
∵∠DMN=∠DGM,
∴∠MDG=∠MGD,
∴MD=MG,
∵BH⊥DG,
∴DH=GH=5,
由△GHM∽△GBA,可得 = ,
∴ = ,
∴MG= ,
∴x=AM=8 ﹣ = .
综上所述,满足条件的x的值为8 ﹣10或 .
【点评】本题属于四边形综合题,考查了矩形的性质,翻折变换,解直角三角形,相似三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 顶 踩
回复

使用道具 举报

沙发
 楼主| 发表于 2020-4-17 21:57:09 | 只看该作者
下载链接 2019山东省济宁市中考数学试题(word版,含解析).rar (290 KB, 下载次数: 506)
    打开微信,扫描下方二维码添加公众号“czwkzy”,关注初中微课资源公众号,   免费获取解压密码      如已关注,请进入“初中微课资源”公众号,在底部输入“密码”会自动回复最新下载密码。
      更多教学资源,免费、持续更新。



回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2024-11-26 23:22

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表