绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

查看: 3700|回复: 1
打印 上一主题 下一主题

最新北师大版八年级数学下册2.5 第2课时 一元一次不等式与一次函数的综合应用教学设计及反思word下载

[复制链接]
跳转到指定楼层
楼主
发表于 2020-4-12 11:33:23 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
           此套北师大版八年级数学下册教学设计及反思word下载绿色圃中小学教育网整理,供大家免费使用下载转载前请注明出处 部分图片、表格、公式、特殊符号无法显示,需要下载的老师、家长们可以到本帖子二楼(往下拉)下载word压缩文件附件使用!
        如有疑问,请联系网站底部工作人员,将第一时间为您解决问题!

文件预览:
第2课时 一元一次不等式与一次函数的综合应用


1.复习并巩固运用一次函数图象解决一元一次不等式的方法;
2.能够运用一元一次不等式与一次函数解决实际问题.(重点)               
一、情境导入
甲乙两家商店用同样的价格出售同样的商品.并且又各自推出不同的优惠方案.
甲推出的方案:凡在本店购买商品超过300元,即可享受会员9折优惠;
乙推出的方案:凡在本店购买商品超过400元,即可获赠80元代金券.
你能分析出这两种方法哪种更优惠吗?今天我们就将学习用不等式解决这些问题.
二、合作探究
探究点:一元一次不等式与一次函数关系的实际应用
【类型一】 数形结合问题
  某通讯公司推出了①②两种收费方式,收费y1,y2(元)与通讯时间x(分钟)之间的函数关系如图所示,若使用资费①更加划算,通讯时间x(分钟)的取值范围是________.
解析:首先将已知点的坐标代入一次函数的解析式求得k值,然后确定两函数图象的交点坐标,从而确定x的取值范围:由题设可得不等式kx+30<15x.∵y1=kx+30经过点(500,80),∴k=110,∴y1=110x+30,y2=15x,解得:x=300,y=60.∴两直线的交点坐标为(300,60),∴当x>300时不等式kx+30<15x中x成立,故答案为x>300.
方法总结:本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.
【类型二】 方案讨论问题
  某学校计划购买若干台电脑,现在从两家商场了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?
解析:购买电脑的总费用等于电脑的台数乘以每台的单价,学校选择哪家商场购买更优惠就是比较y的大小.当y甲>y乙时,学校选择乙商场购买更优惠;当y甲=y乙时,学校选择甲、乙两商场购买一样优惠;当y甲<y乙时,学校选择甲商场购买更优惠.
解:在甲商场购买花费y甲=6000+(x-1)×6000×(1-25%)=4500x+1500(x>1的整数);在乙商场购买花费y乙=x•6000×(1-20%)=4800x(x>1的整数);当y甲>y乙时,学校选择乙商场购买更优惠,即4500x+1500>4800x,解得x<5;当y甲=y乙时,学校选择甲、乙两商场购买一样优惠,即4500x+1500=4800x,解得x=5;当y甲<y乙时,学校选择甲商场购买更优惠,即4500x+1500<4800x,解得x>5.所以当购买少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买多于5台电脑时,学校选择甲商场购买更优惠.
方法总结:根据实际问题用一次函数表示两个变量之间的关系,再通过比较两个函数的函数值得到对应的自变量的取值范围,从而解决实际问题.
【类型三】 最值问题
  为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.
(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?
(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.
解析:(1)根据题设条件,求出等量关系,列一元一次方程即可求解;(2)根据题设中的不等关系列出相应的不等式,通过求解不等式确定最值,求最值时要注意自变量的取值范围.
解:设购进A种树苗x棵,则购进B种树苗(17-x)棵,
(1)根据题意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,
答:购进A种树苗10棵,B种树苗7棵;
(2)由题意得17-x<x,解得x>172,
所需费用为80x+60(17-x)=20x+1020(元),
费用最省需x取最小整数9,此时17-x=17-9=8,
此时所需费用为20×9+1020=1200(元).
答:购买9棵A种树苗,8棵B种树苗的费用最省,此方案所需费用1200元.
三、板书设计
一元一次不等式与一次函数关系的实际应用
分类讨论思想、数形结合思想

本课时结合生活中的实例组织学生进行探索,在探索的过程中渗透分类讨论的思想方法,培养学生分析、解决问题的能力,从新课到练习都充分调动了学生的思考能力,为后面的学习打下基础
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 顶 踩
回复

使用道具 举报

沙发
 楼主| 发表于 2020-4-12 11:33:52 | 只看该作者
下载链接 2.5 第2课时 一元一次不等式与一次函数的综合应用.rar (292.55 KB, 下载次数: 387)
    打开微信,扫描下方二维码添加公众号“czwkzy”,关注初中微课资源公众号,   免费获取解压密码      如已关注,请进入“初中微课资源”公众号,在底部输入“密码”会自动回复最新下载密码。
      更多教学资源,免费、持续更新。



回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2024-11-14 23:45

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表