绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

查看: 3790|回复: 1
打印 上一主题 下一主题

新人教版数学九年级下册28.2.1解直角三角形教学设计及反思word下载

[复制链接]
跳转到指定楼层
楼主
发表于 2020-4-2 21:30:52 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
           此套人教版九年级数学下册教案及反思绿色圃中小学教育网整理,供大家免费使用下载转载前请注明出处         部分图片、表格、公式、特殊符号无法显示,需要下载的老师、家长们可以到本帖子二楼(往下拉)下载word压缩文件附件使用!
        如有疑问,请联系网站底部工作人员,将第一时间为您解决问题!

文件预览:
28.2.1    解直角三角形


1.理解解直角三角形的意义和条件;(重点)
2.根据元素间的关系,选择适当的关系式,求出所有未知元素.(难点)
一、情境导入
世界遗产意大利比萨斜塔在1350年落成时就已倾斜.设塔顶中心点为B, 塔身中心线与垂直中心线夹角为∠A,过点B向垂直中心线引垂线,垂足为点C.在Rt△ABC中,∠C=90°,BC=5.2m,AB=54.5m,求∠A的度数.
在上述的Rt△ABC中,你还能求其他未知的边和角吗?
二、合作探究
探究点一:解直角三角形
【类型一】 利用解直角三角形求边或角
  已知在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a,b,c,按下列条件解直角三角形.
(1)若a=36,∠B=30°,求∠A的度数和边b、c的长;
(2)若a=62,b=66,求∠A、∠B的度数和边c的长.
解析:(1)已知直角边和一个锐角,解直角三角形;(2)已知两条直角边,解直角三角形.
解:(1)在Rt△ABC中,∵∠B=30°,a=36,∴∠A=90°-∠B=60°,∵cosB=ac,即c=acosB=3632=243,∴b=sinB•c=12×243=123;
(2)在Rt△ABC中,∵a=62,b=66,∴tanA=ab=33,∴∠A=30°,∴∠B=60°,∴c=2a=122.
方法总结:解直角三角形时应求出所有未知元素,解题时尽可能地选择包含所求元素与两个已知元素的关系式求解.
变式训练:见《学练优》本课时练习“课堂达标训练” 第4题
【类型二】 构造直角三角形解决长度问题
  一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,试求CD的长.
解析:过点B作BM⊥FD于点M,求出BM与CM的长度,然后在△EFD中可求出∠EDF=60°,利用解直角三角形解答即可.
解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=45°,AC=122,∴BC=AC=122.∵AB∥CF,∴BM=sin45°BC=122×22=12,CM=BM=12.在△EFD中,∠F=90°,∠E=30°,∴∠EDF=60°,∴MD=BMtan60°=43,∴CD=CM-MD=12-43.
方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.
变式训练:见《学练优》本课时练习“课后巩固提升” 第4题
【类型三】 运用解直角三角形解决面积问题
  如图,在△ABC中,已知∠C=90°,sinA=37,D为边AC上一点,∠BDC=45°,DC=6.求△ABC的面积.
解析:首先利用正弦的定义设BC=3k,AB=7k,利用BC=CD=3k=6,求得k值,从而求得AB的长,然后利用勾股定理求得AC的长,再进一步求解.
解:∵∠C=90°,∴在Rt△ABC中,sinA=BCAB=37,设BC=3k,则AB=7k(k>0),在Rt△BCD中,∵∠BCD=90°,∴∠BDC=45°,∴∠CBD=∠BDC=45°,∴BC=CD=3k=6,∴k=2,∴AB=14.在Rt△ABC中,AC=AB2-BC2=142-62=410,∴S△ABC=12AC•BC=12×410×6=1210.所以△ABC的面积是1210.
方法总结:若已知条件中有线段的比或可利用的三角函数,可设出一个辅助未知数,列方程解答.
变式训练:见《学练优》本课时练习“课堂达标训练”第7题
探究点二:解直角三角形的综合
【类型一】 解直角三角形与等腰三角形的综合
  已知等腰三角形的底边长为2,周长为2+2,求底角的度数.
解析:先求腰长,作底边上的高,利用等腰三角形的性质,求得底角的余弦,即可求得底角的度数.
解:如图,在△ABC中,AB=AC,BC=2,∵周长为2+2,∴AB=AC=1.过A作AD⊥BC于点D,则BD=22,在Rt△ABD中,cos∠ABD=BDAB=22,∴∠ABD=45°,即等腰三角形的底角为45°.
方法总结:求角的度数时,可考虑利用特殊角的三角函数值.
变式训练:见《学练优》本课时练习“课后巩固提升”第2题
【类型二】 解直角三角形与圆的综合
  已知:如图,Rt△AOB中,∠O=90°,以OA为半径作⊙O,BC切⊙O于点C,连接AC交OB于点P.
(1)求证:BP=BC;
(2)若sin∠PAO=13,且PC=7,求⊙O的半径.
解析:(1)连接OC,由切线的性质,可得∠OCB=90°,由OA=OC,得∠OCA=∠OAC,再由∠AOB=90°,可得出所要求证的结论;(2)延长AO交⊙O于点E,连接CE,在Rt△AOP和Rt△ACE中,根据三角函数和勾股定理,列方程解答.
解:(1)连接OC,∵BC是⊙O的切线,∴∠OCB=90°,∴∠OCA+∠BCA=90°.∵OA=OC,∴∠OCA=∠OAC,∴∠OAC+∠BCA=90°,∵∠BOA=90°,∴∠OAC+∠APO=90°,∵∠APO=∠BPC,∴∠BPC=∠BCA,∴BC=BP;
(2)延长AO交⊙O于点E,连接CE,在Rt△AOP中,∵sin∠PAO=13,设OP=x,AP=3x,∴AO=22x.∵AO=OE,∴OE=22x,∴AE=42x.∵sin∠PAO=13,∴在Rt△ACE中CEAE=13,∴ACAE=223,∴3x+742x=223,解得x=3,∴AO=22x=62,即⊙O的半径为62.
方法总结:本题考查了切线的性质、三角函数、勾股定理等知识,解决问题的关键是根据三角函数的定义结合勾股定理列出方程.
变式训练:见《学练优》本课时练习“课后巩固提升”第9题
三、板书设计
1.解直角三角形的基本类型及其解法;
2.解直角三角形的综合.

教学反思;
    本节课的设计,力求体现新课程理念.给学生自主探索的时间和宽松和谐的氛围,让学生学得更主动、更轻松,力求在探索知识的过程中,培养探索能力、创新精神和合作精神,激发学生学习数学的积极性和主动性.
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 顶 踩
回复

使用道具 举报

沙发
 楼主| 发表于 2020-4-2 21:31:18 | 只看该作者
下载链接 28.2.1 解直角三角形.rar (133.09 KB, 下载次数: 472)
    打开微信,扫描下方二维码添加公众号“czwkzy”,关注初中微课资源公众号,   免费获取解压密码      如已关注,请进入“初中微课资源”公众号,在底部输入“密码”会自动回复最新下载密码。
      更多教学资源,免费、持续更新。



回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2025-1-3 23:40

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表