绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

查看: 3687|回复: 1
打印 上一主题 下一主题

新人教版初中数学八年级下册18.2.1第1课时矩形的性质教案及反思word下载

[复制链接]
跳转到指定楼层
楼主
发表于 2020-3-29 13:00:29 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
           此套人教版初中数学配套教学设计及反思由绿色圃中小学教育网整理,供大家免费使用下载转载前请注明出处       部分图片、表格、公式、特殊符号无法显示需要下载的老师、家长们可以到本帖子二楼(往下拉)下载word压缩文件附件使用!
如有疑问,请联系网站底部工作人员,将第一时间为您解决问题!
文件预览:
18.2 特殊的平行四边形

18.2.1 矩 形

第1课时 矩形的性质


1.理解并掌握矩形的性质定理及推论;(重点)
2.会用矩形的性质定理及推论进行推导证明;(重点)
3.会综合运用矩形的性质定理、推论以及特殊三角形的性质进行证明与计算.(难点)
一、情境导入
如图,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点D,你会发现什么?   
可以发现,角的大小改变了,但不管如何,它仍然保持平行四边形的形状.
我们若改变平行四边形的内角,使其一个内角恰好为直角,就得到一种特殊的平行四边形,也就是我们早已熟悉的长方形,即矩形,如图所示.
二、合作探究
探究点一:矩形的性质
【类型一】 运用矩形的性质求线段或角
  在矩形ABCD中,O是BC的中点,∠AOD=90°,矩形ABCD的周长为24cm,则AB长为(  )
A.1cm  B.2cm  C.2.5cm  D.4cm
解析:在矩形ABCD中,O是BC的中点,∠AOD=90°.根据矩形的性质得到△ABO≌△OCD,则OA=OD,∠DAO=45°,所以∠BOA=∠BAO=45°,即BC=2AB.由矩形ABCD的周长为24cm,得2AB+4AB=24cm,解得AB=4cm.故选D.
方法总结:解题时矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.
【类型二】 运用矩形的性质解决有关面积问题
  如图,矩形ABCD的对角线的交点为O,EF过点O且分别交AB,CD于点E,F,则图中阴影部分的面积是矩形ABCD的面积的(  )
A.15  B.14  C.13  D.310
解析:∵在矩形ABCD中,AB∥CD,OB=OD,∴∠ABO=∠CDO.在△BOE和△DOF中,∠ABO=∠CDO,OB=OD,∠BOE=∠DOF,∴△BOE≌△DOF(ASA),∴S△BOE=S△DOF,∴S阴影=S△AOB=14S矩形ABCD.故选B.
方法总结:运用矩形的性质,通过证明全等三角形进行转化,将求不规则图形的面积转化为求简单图形面积是解题的关键.
【类型三】 运用矩形的性质证明线段相等
  如图,在矩形ABCD中,以顶点B为圆心、边BC长为半径作弧,交AD边于点E,连接BE,过C点作CF⊥BE于F.求证:BF=AE.
解析:利用矩形的性质得出AD∥BC,∠A=90°,再利用全等三角形的判定得出△BFC≌△EAB,进而得出答案.
证明:在矩形ABCD中,AD∥BC,∠A=90°,∴∠AEB=∠FBC.∵CF⊥BE,∴∠BFC=∠A=90°.由作图可知,BC=BE.在△BFC和△EAB中,∠A=∠CFB,∠AEB=∠FBC,EB=BC,∴△BFC≌△EAB(AAS),∴BF=AE.
方法总结:涉及与矩形性质有关的线段的证明,可运用题设条件结合三角形全等进行证明,一般是将两条线段转化到一对全等三角形中进行证明.
【类型四】 运用矩形的性质证明角相等
  如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.
解析:要证AE平分∠BAD,可转化为△ABE为等腰直角三角形,得AB=BE.又AB=CD,再将它们分别转化为两全等三角形的两对应边,根据全等三角形的判定和矩形的性质,即可求证.
证明:∵四边形ABCD是矩形,∴∠B=∠C=∠BAD=90°,AB=CD,∴∠BEF+∠BFE=90°.∵EF⊥ED,∴∠BEF+∠CED=90°.∴∠BFE=∠CED,∴∠BEF=∠EDC.在△EBF与△DCE中,∠BFE=∠CED,EF=ED,∠BEF=∠EDC,∴△EBF≌△DCE(ASA).∴BE=CD.∴BE=AB,∴∠BAE=∠BEA=45°,∴∠EAD=45°,∴∠BAE=∠EAD,∴AE平分∠BAD.
方法总结:矩形的问题可以转化到直角三角形或等腰三角形中去解决.
探究点二:直角三角形斜边上的中线的性质
  如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.
(1)若AB=10,AC=8,求四边形AEDF的周长;
(2)求证:EF垂直平分AD.
解析:(1)根据“直角三角形斜边上的中线等于斜边的一半”可得DE=AE=12AB,DF=AF=12AC,再根据四边形的周长的公式计算即可得解;(2)根据“到线段两端点距离相等的点在线段的垂直平分线上”证明即可.
(1)解:∵AD是△ABC的高,E、F分别是AB、AC的中点,∴DE=AE=12AB=12×10=5,DF=AF=12AC=12×8=4,∴四边形AEDF的周长=AE+DE+DF+AF=5+5+4+4=18;
(2)证明:∵DE=AE,DF=AF,∴E、F在线段AD的垂直平分线上,∴EF垂直平分AD.
方法总结:当已知条件含有线段的中点、直角三角形的条件时,可联想直角三角形斜边上的中线的性质进行求解.
三、板书设计
1.矩形的性质
矩形的四个角都是直角;矩形的对角线相等.
2.直角三角形斜边上的中线的性质
直角三角形斜边上的中线等于斜边的一半.

教学反思:
通过多媒体演示知识的探究过程,让学生在体验、实践的过程中有更直观地认识,扩大认知结构,发展能力,更好地理解平行四边形与矩形之间的从属关系和内在联系,使课堂教学真正落实到学生的发展上.
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 顶 踩
回复

使用道具 举报

沙发
 楼主| 发表于 2020-3-29 13:01:00 | 只看该作者
下载链接 18.2.1 第1课时 矩形的性质.rar (354.64 KB, 下载次数: 541)
    打开微信,扫描上面二维码添加公众号“czwkzy”,关注初中微课资源公众号,   免费获取解压密码      如已关注,请进入“初中微课资源”公众号,在底部输入“密码”会自动回复最新下载密码。
      所有教学资源,免费、持续更新。



回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2025-1-3 18:02

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表