绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

查看: 8138|回复: 4
打印 上一主题 下一主题

中考试题分类汇编——方案设计

[复制链接]
跳转到指定楼层
楼主
发表于 2008-4-24 15:28:00 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
一、图案设计

  1、(2007四川乐山)认真观察图(10.1)的4个图中阴影部分构成的图案,回答下列问题:




  (1)请写出这四个图案都具有的两个共同特征.


  特征1_________________________________________________


  特征2_________________________________________________


  (2)请在图(10.2)中设计出你心中最美丽的图案,使它也具备你所写出的上述特征




  解:(1)特征1:都是轴对称图形;特征2:都是中心对称图形;特征3:这些图形的面积都等于4个单位面积;等····· 6


  (2)满足条件的图形有很多,只要画正确一个,都可以得满分.········· 9






  2、(2007福建福州)为创建绿色校园,学校决定对一块正方形的空地进行种植花草,现向学生征集设计图案.图案要求只能用圆弧在正方形内加以设计,使正方形和所画的图弧构成的图案,既是轴对称图形又是中心对称图形.种植花草部分用阴影表示.请你在图、图④、图⑤中画出三种不同的的设计图案.


  提示:在两个图案中,只有半径变化而圆心不变的图案属于同一种,例如:图、图只能算一种.  





  解:以下为不同情形下的部分正确画法,答案不唯一.(满分8分)






  3、(2007哈尔滨)现将三张形状、大小完全相同的平行四边形透明纸片,分别放在方格纸中,方格纸中的每个小正方形的边长均为1,并且平行四边形纸片的每个顶点与小正方形的顶点重合(如图1、图2、图3).




  分别在图1、图2、图3中,经过平行四边形纸片的任意一个顶点画一条裁剪线,沿此裁剪线将平行四边形纸片裁成两部分,并把这两部分重新拼成符合下列要求的几何图形.


  要求:


  (1)在左边的平行四边形纸片中画一条裁剪线,然后在右边相对应的方格纸中,按实际大小画出所拼成的符合要求的几何图形;


  (2)裁成的两部分在拼成几何图形时要互不重叠且不留空隙;


  (3)所画出的几何图形的各顶点必须与小正方形的顶点重合.


  解:






  二、代数式中的方案设计


4、(2007辽宁大连)某班级为准备元旦联欢会,欲购买价格分别为2元、4元和10元的三种奖品,每种奖品至少购买一件,共买16件,恰好用50元。若2元的奖品购买a件。


  (1)用含a的代数式表示另外两种奖品的件数;


  (2)请你设计购买方案,并说明理由。


  


  三、解直角三角形中的方案设计


  5、(2007湖北潜江)经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得.  


  
1)求所测之处江的宽度(


  
2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.

  


      






  解:(1)在中,


  ∴(米)


  答:所测之处江的宽度约为248米……………………………………………………(3分)


(2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识


  来解决问题的,只要正确即可得分.


  四、统计知识中的方案设计


 6、(2007江西)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):


  方案1  所有评委所给分的平均数.


  方案2  在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.


  方案3  所有评委所给分的中位数.


  方案4  所有评委所给分的众数.


  为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图:






  (1)分别按上述4个方案计算这个同学演讲的最后得分;


  (2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.


  解:(1)方案1最后得分:·········· 1


  方案2最后得分:·········· 2


  方案3最后得分:············ 3


  方案4最后得分:········· 4


  (2)因为方案1中的平均数受极端数值的影响,不能反映这组数据的“平均水平”,


  所以方案1不适合作为最后得分的方案.·················· 6


  因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.


  五、方程、函数中的方案设计


7、(2007山东济宁)某小区有一长100m,宽80cm的空地,现将其建成花园广场,设计图案如下,阴影区域为绿化区(四块绿化区是全等矩形),空白区域为活动区,且四周出口一样宽,宽度不小于50m,不大于60m。预计活动区每平方米造价60元,绿化区每平方米造价50元。






  (1)设一块绿化区的长边为xm,写出工程总造价yx的函数关系式(写出x的取值范围)


(2)如果小区投资46.9万元,问能否完成工程任务,若能,请写出x为整数的所有工程方案;若不能,请说明理由。(参考值:)



  


  8、(2007广东梅州)梅林中学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学生到县城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km的地方出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km/h,人步行的速度是5km/h(上、下车时间忽略不计).


  (1)若小汽车送4人到达考场,然后再回到出故障处接其他人,请你能过计算说明他们能否在截止进考场的时刻前到达考场;


  (2)假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.


  解:(1(分钟),


      不能在限定时间内到达考场.················ 4


  
2)方案1:先将4人用车送到考场,另外4人同时步行前往考场,汽车到考场后返回到与另外4人的相遇处再载他们到考场.··· 5


  
先将4人用车送到考场所需时间为(分钟).


      0.25小时另外4人步行了1.25km,此时他们与考场的距离为km····· 7


  
设汽车返回后先步行的4人相遇,


      ,解得


  
汽车由相遇点再去考场所需时间也是········ 9


  
所以用这一方案送这8人到考场共需


  
所以这8个个能在截止进考场的时刻前赶到.······· 10


  
方案28人同时出发,4人步行,先将4人用车送到离出发点处,然后这4个人步行前往考场,车回去接应后面的4人,使他们跟前面4人同时到达考场.······· 6


  
处步行前考场需


  
汽车从出发点到处需先步行的4人走了


  
设汽车返回h)后与先步行的4人相遇,则有,解得········ 8


  
所以相遇点与考场的距离为


  
由相遇点坐车到考场需


  
所以先步行的4人到考场的总时间为


  
先坐车的4人到考场的总时间为


  
他们同时到达,则有,解得


  
代入上式,可得他们赶到考场所需时间为(分钟).


     


  他们能在截止进考场的时刻前到达考场


  六、不等式中的方案设计


  9、(2007山东青岛)某饮料厂开发了AB两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示.现用甲原料和乙原料各2800进行试生产,计划生产AB两种饮料共100瓶.设生产A种饮料x瓶,解答下列问题:


  (1有几种符合题意的生产方案?写出解答过程;


  (2如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,这两种饮料成本总额为y元,请写出yx之间的关系式,并说明x取何值会使成本总额最低?
原料名称


  饮料名称


A
20
40
B
30
20



解:设生产A种饮料x瓶,根据题意得:




  解这个不等式组,得20x40


  因为其中正整数解共有21个,


  所以符合题意的生产方案有21种.



  根据题意,得 y2.6x2.8(100x)


  整理,得 y=-0.2x280



  k=-0.20


  yx的增大而减小.


  x40成本总额最低.
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享1 顶 踩
回复

使用道具 举报

沙发
 楼主| 发表于 2008-4-24 15:29:00 | 只看该作者

回复: 中考试题分类汇编——方案设计

10、(2007重庆)我市某镇组织20辆汽车装运完ABC三种脐橙共100吨到外地销售。按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满。根据下表提供的信息,解答以下问题:




A
B
C
每辆汽车运载量(吨)
6
5
4
每吨脐橙获得(百元)
12
16
10
  (1)设装运A种脐橙的车辆数为,装运B种脐橙的车辆数为,求之间的函数关系式;


  (2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;


  (3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值。


  解:(1)根据题意,装运A种脐橙的车辆数为,装运B种脐橙的车辆数为,那么装运C种脐橙的车辆数为,则有:


     整理得:


  (2)由(1)知,装运ABC三种脐橙的车辆数分别为,由题意得:,解得:48,因为为整数,所以的值为45678,所以安排方案共有5种。


  方案一:装运A种脐橙4车,B种脐橙12车,C种脐橙4车;


  方案二:装运A种脐橙5车,B种脐橙10车,C种脐橙5车;


  方案三:装运A种脐橙6车,B种脐橙8车,C种脐橙6车;


  方案四:装运A种脐橙7车,B种脐橙6车,C种脐橙7车;


  方案五:装运A种脐橙8车,B种脐橙4车,C种脐橙8车;


  (3)设利润为W(百元)则:


  


  
W的值随的增大而减小


  要使利润W最大,则,故选方案一


  1408(百元)=14.08(万元)


  
答:当装运A种脐橙4车,B种脐橙12车,C种脐橙4车时,获利最大,最大利润为14.08万元。


  11、(2007湖南怀化)2007年我市某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个种造型需甲种花卉80盆,乙种花卉40盆,搭配一个种造型需甲种花卉50盆,乙种花卉90盆.


  (1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.


  (2)若搭配一个种造型的成本是800元,搭配一个种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?


  解:设搭配种造型个,则种造型为个,


  依题意,得:


  解这个不等式组,得: 是整数,可取


  可设计三种搭配方案:


  ①种园艺造型个 种园艺造型


  ②种园艺造型个 种园艺造型


  ③种园艺造型个 种园艺造型个.



  (2)方法一:由于种造型的造价成本高于种造型成本.所以种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:(元)


  方法二:方案①需成本:(元)


  方案②需成本:(元)


  方案③需成本:


  应选择方案③,成本最低,最低成本为



  12、(2007南充)某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:
类 别
电视机
洗衣机
进价(元/台)
1800
1500
售价(元/台)
2000
1600
计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800元.


  (1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用


  (2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价


  解:(1)设商店购进电视机x台,则购进洗衣机(100x)台,根据题意,得
      ,解不等式组,得 x         
   即购进电视机最少34台,最多39台,商店有6种进货方案.

   (2)设商店销售完毕后获利为y元,根据题意,得
     y=(20001800x(16001500)(100x)100x10000
     ∵ 1000,∴ 当x最大时,y的值最大.
     即 当x39时,商店获利最多为13900元.



  13、(2007四川眉山)某县响应“建设环保节约型社会”的号召,决定资助部分付镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用户数、修建用地情况如下表:
沼气池
修建费用(万元/)
可供使用户数(/)
占地面积(m2/)
A
3
20
48
B
2
3
6
政府相关部门批给该村沼气池修建用地708m2.设修建A型沼气池x个,修建两种型号沼气池共需费用y万元.


      (1)yx之间的函数关系式;


      (2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;


      (3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.


  


14、(2007山东临沂)某工程机械厂根据市场需求,计划生产AB两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:
型号
A
B
成本(万元/)
200
240
售价(万元/)
250
300
(1)该厂对这两型挖掘机有哪几种生产方案?


  (2)该厂如何生产能获得最大利润?


(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m0),该厂应该如何生产可以获得最大利润?(注:利润=售价-成本)


  


  


  15、(2007四川绵阳)绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.


  (1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?


  (2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?


  解:1)设安排甲种货车x辆,则安排乙种货车(8x)辆,依题意,得


  4x + 28x)≥20,且x + 28x)≥12


  解此不等式组,得 x2,且 x4 2x4


  ∵ x是正整数,?∴ x可取的值为234


  因此安排甲、乙两种货车有三种方案:




甲种货车
乙种货车
方案一
2
6
方案二
3
5
方案三
4
4
  (2)方案一所需运费 300×2 + 240×6 = 2040元;


  方案二所需运费 300×3 + 240×5 = 2100元;


  方案三所需运费 300×4 + 240×4 = 2160元.


  所以王灿应选择方案一运费最少,最少运费是2040元.


  16、(2007山东济南)某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.


  (1)设租用甲种汽车辆,请你帮助学校设计所有可能的租车方案;


  (2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.


  解:(1)由租用甲种汽车辆,则租用乙种汽车········· 1


  由题意得:············ 4


  解得:············· 5


  即共有2种租车方案:


  第一种是租用甲种汽车5辆,乙种汽车3辆;


  第二种是租用甲种汽车6辆,乙种汽车2辆.·········· 6


  (2)第一种租车方案的费用为元;


  第二种租车方案的费用为········ 7


  第一种租车方案更省费用.


  17、(2007哈尔滨)青青商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.


  (1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙两种商品各多少件?


  (2)该商场为使甲、乙两种商品共100件的总利润(利润=售价进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案;


  (3)在“五·一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:
打折前一次性购物总金额
优惠措施
不超过300
不优惠
超过300元且不超过400
售价打九折
超过400
售价打八折
  按上述优惠条件,若小王第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品一共多少件?(通过计算求出所有符合要求的结果)


  解:(1)设该商场能购进甲种商品件,根据题意,得


  ················· 1


  


  乙种商品:(件)············ 1


  答:该商品能购进甲种商品40件,乙种商品60件.


  (2)设该商场购进甲种商品件,则购进乙种商品件.根据题意,得


  ·········· 1


  因此,不等式组的解集为········ 1


  根据题意,的值应是整数,


  该商场共有三种进货方案:


  方案一:购进甲种商品48件,乙种商品52件,


  方案二:购进甲种商品49件,乙种商品51件,


  方案三:购进甲种商品50件,乙种商品50件.······ 1


  (3)根据题意,得


  第一天只购买甲种商品不享受优惠条件  (件)·········· 1


  第二天只购买乙种商品有以下两种情况:


  情况一:购买乙种商品打九折,(件)


  情况二:购买乙种商品打八折,(件)


  一共可购买甲、乙两种商品(件)······ 1


  或(件)················· 1


  答:这两天他在该商场购买甲、乙两种商品一共18件或19件.
回复

使用道具 举报

板凳
发表于 2008-4-25 07:55:00 | 只看该作者

回复:中考试题分类汇编——方案设计

感谢啊
回复

使用道具 举报

地板
发表于 2008-4-25 07:55:00 | 只看该作者

回复:中考试题分类汇编——方案设计

质量很不错
回复

使用道具 举报

5#
发表于 2008-4-25 07:56:00 | 只看该作者

回复:中考试题分类汇编——方案设计

教师学生都可以学习
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2024-11-27 17:39

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表