|
本节课安排了两个例题,例1是教材P63的例题,它是在引导学生寻找出位似变换中对应点的坐标的变化规律后的一个用图形的坐标的变化来表示图形的位似变换的题目,其目的是巩固新知识,帮助学生加深理解用图形的坐标的变化来表示图形的位似变换知识,此题目应让学生用不同方法作出图形.例2是教材P64的一个问题,它是“平移、轴对称、旋转和位似”四种变换的一个综合题目,所给的图案由于观察的角度不同,答案就会不同,因此应让学生自己来回答,并在顺利完成这个题目基础上,让学生自己总结出这四种变换的异同.
四、课堂引入
1.如图,△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),(1)将△ABC向左平移三个单位得到△A1B1C1,写出A1、B1、C1三点的坐标;
(2)写出△ABC关于x轴对称的△A2B2C2三个顶点A2、B2、C2的坐标;
(3)将△ABC绕点O旋转180°得到△A3B3C3,写出A3、B3、C3三点的坐标.
2.在前面几册教科书中,我们学习了在平面直角坐标系中,如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示.
3.探究:
(1)如图,在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为位似中心,相似比为 ,把线段AB缩小.观察对应点之间坐标的变化,你有什么发现?
(2)如图,△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O为位似中心,相似比为2,将△ABC放大,观察对应顶点坐标的变化,你有什么发现?
【归纳】 位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.
五、例题讲解
例1(教材P63的例题)
分析:略(见教材P63的例题分析)
解:略(见教材P63的例题解答)
问:你还可以得到其他图形吗?请你自己试一试!
解法二:点A的对应点A′′的坐标为(-6× ,6× ),即A′′(3,-3).类似地,可以确定其他顶点的坐标.(具体解法与作图略)
例2(教材P64)在右图所示的图案中,你能找出平移、轴对称、旋转和位似这些变换吗?
分析:观察的角度不同,答案就不同.如:它可以看作是一排鱼顺时针旋转45°角,连续旋转八次得到的旋转图形;它还可以看作位似中心是图形的正中心,相似比是4∶3∶2∶1的位似图形,…….
解:答案不惟一,略.
六、课堂练习
1. 教材P64.1、2
2. △ABO的定点坐标分别为A(-1,4),B(3,2),O(0,0),试将△ABO放大为△EFO,使△EFO与△ABO的相似比为2.5∶1,求点E和点F的坐标.
3. 如图,△AOB缩小后得到△COD,观察变化前后的三角形顶点,坐标发生了什么变化,并求出其相似比和面积比.
七、课后练习
1.教材P65.3, P66.5、8
2.请用平移、轴对称、旋转和位似这四种变换设计一种图案(选择的变换不限).
3.如图,将图中的△ABC以A为位似中心,放大到1.5倍,请画出图形,并指出三个顶点的坐标所发生的变化.
教学反思
第二十八章 锐角三角函数
单元要点分析
内容简介
本章内容分为两节,第一节主要学习正弦、余弦和正切等锐角三角函数的概念,第二节主要研究直角三角形中的边角关系和解直角三角形的内容.第一节内容是第二节的基础,第二节是第一节的应用,并对第一节的学习有巩固和提高的作用.
相似三角形和勾股定理等是学习本章的直接基础.
本章属于三角学中的最基础的部分内容,而高中阶段的三角内容是三角学的主体部分,无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础.
教学目标
1.知识与技能
(1)通过实例认识直角三角形的边角关系,即锐角三角函数(sinA,cosA,tanA),知道30°,45°,60°角的三角函数值.
(2)会使用计算器由已知锐角求它的三角函数值,由已知三角函数值会求它的对应的锐角.
(3)运用三角函数解决与直角三角形有关的简单的实际问题.
(4)能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题.
2.过程与方法
贯彻在实践活动中发现问题,提出问题,在探究问题的过程中找出规律,再运用这些规律于实际生活中.
3.情感、态度与价值观
通过解直角三角形培养学生数形结合的思想.
重点与难点
1.重点
(1)锐角三角函数的概念和直角三角形的解法,特殊角的三角函数值也很重要,应该牢牢记住.
(2)能够运用三角函数解直角三角形,并解决与直角三角形有关的实际问题.
2.难点
(1)锐角三角函数的概念.
(2)经历探索30°,45°,60°角的三角函数值的过程,发展学生观察、分析,解决问题的能力.
教学方法
在本章,学生首次接触到以角度为自变量的三角函数,初学者不易理解.讲课时应注意,只有让学生正确理解锐角三角函数的概念,才能掌握直角三角形边与角之间的关系,才能运用这些关系解直角三角形.故教学中应注意以下几点:
1.突出学数学、用数学的意识与过程.三角函数的应用尽量和实际问题联系起来,减少单纯解直角三角形的问题.
|
|