绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

楼主: admin
打印 上一主题 下一主题

人教版初中九年级数学下册全册教案下载合集

[复制链接]
8#
 楼主| 发表于 2011-2-6 12:26:00 | 只看该作者
(2)该运动员身高1.8m,在这次跳投中,球在头顶上方
0.25m处出手,问:球出手时,他跳离地面的高度是多少?

                                     B组
4.某公司草坪的护栏是由50段形状相同的抛物线组成的,为牢固起见,每段护栏需按间距0.4m加设不锈钢管(如图a)做成的立柱,为了计算所需不锈钢管立柱的总长度,设计人员利用图b所示的坐标系进行计算.
(1)求该抛物线的函数关系式;
(2)计算所需不锈钢管立柱的总长度.






5.某跳水运动员在进行10m跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线.在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面 m,入水处距池边的距离为4m,同时运动员在距水面高度5m以前,必须完成规定的翻腾动作,并调整好入水姿势时,否则就会出现失误.
(1)求这条抛物线的函数关系式;
(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为 m,问此次跳水会不会失误?并通过计算说明理由.
[本课学习体会]

26 . 3  实践与探索(2)
[本课知识要点]
让学生进一步体验把实际问题转化为有关二次函数知识的过程.
[MM及创新思维]
    二次函数的有关知识在经济生活中的应用更为广阔,我们来看这样一个生活中常见的问题:某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为x米,面积为S平方米.请你设计一个方案,使获得的设计费最多,并求出这个费用.你能解决它吗?类似的问题,我们都可以通过建立二次函数的数学模型来解决.
[实践与探索]       
例1.某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元。物价部门规定其销售单价不得高于每千克70元,也不得低于30元。市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克。在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算)。设销售单价为x元,日均获利为y元。
(1)求y关于x的二次函数关系式,并注明x的取值范围;
(2)将(1)中所求出的二次函数配方成 的形式,写出顶点坐标;在直角坐标系画出草图;观察图象,指出单价定为多少元时日均获利最多,是多少?
分析  若销售单价为x元,则每千克降低(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利为(x-30)元,从而可列出函数关系式。
解  (1)根据题意,得
         
           (30≤x≤70)。
(2)   。
顶点坐标为(65,1950)。二次函数草图略。
经观察可知,当单价定为65元时,日均获利最多,是1950元。

例2。某公司生产的某种产品,它的成本是2元,售价是3元,年销售量为100万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(十万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:
X(十万元)        0        1        2        …
y        1        1.5        1.8        …
(1)求y与x的函数关系式;
(2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元)的函数关系式;
(3)如果投入的年广告费为10~30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?
解  (1)设二次函数关系式为 。
由表中数据,得  。
解得 。
所以所求二次函数关系式为 。
(2)根据题意,得 。
(3) 。
由于1≤x≤3,所以当1≤x≤2。5时,S随x的增大而增大。.
[当堂课内练习]
1.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价                                                                  (     )
A、5元            B、10元           C、15元           D、20元
2.某公司生产某种产品,每件产品成本是3元,售价是4元,年销售量为10万件,为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(万元)时,产品的年销售量将是原销售量的y倍,且 ,如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(万元)与广告费x(万元)的函数关系式,并计算广告费是多少万元时,公司获得的年利润最大,最大年利润是是多少万元?
[本课课外作业]
A组
1.某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量t(件),
与每件的销售价x(元/件)可看成是一次函数关系:t=-3x+204。
(1)写出商场卖这种服装每天的销售利润y与每件的销售价x之间的函数关系式(每天的销售利润是指所卖出服装的销售价与购进价的差);
(2)通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少?
回复

使用道具 举报

9#
 楼主| 发表于 2011-2-6 12:26:00 | 只看该作者
2.某旅社有客房120间,当每间房的日租金为50元时,每天都客满,旅社装修后,要提高租金,经市场调查,如果一间客房日租金增加5元,则客房每天出租数会减少6间,不考虑其他因素,旅社将每间客房日租金提高到多少元时,客房的总收入最大?比装修前客房日租金总收入增加多少元?
3.某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500kg;销售单价每涨1元,月销售量就减少10kg.针对这种水产品的销售情况,请解答以下问题:
(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;
(2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式;
(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
B组
4.行驶中的汽车在刹车后由于惯性的作用,还要继续向前滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号汽车的刹车性能﹙车速不超过140千米/时﹚,对这种汽车进行测试,数据如下表:

刹车时车速(千米/时)        0        10        20        30        40        50        60
刹车距离        0        0.3        1.0        2.1        3.6        5.5        7.8

﹙1﹚以车速为x轴,以刹车距离为y轴,在坐标系中描出这些数据所表示的点,并用平滑的曲线连结这些点,得到函数的大致图象;
﹙2﹚观察图象,估计函数的类型,并确定一个满足这些数据的函数关系式;
﹙3﹚该型号汽车在国道上发生一次交通事故,现场测得刹车距离为46.5米,请推测刹车时的车速是多少?请问在事故发生时,汽车是超速行驶还是正常行驶?
[本课学习体会]
26 . 3  实践与探索(3)
[本课知识要点]
(1)会求出二次函数 与坐标轴的交点坐标;
(2)了解二次函数 与一元二次方程、一元二次不等式之间的关系.
[MM及创新思维]
给出三个二次函数:(1) ;(2) ;(3) .
它们的图象分别为









观察图象与x轴的交点个数,分别是    个、    个、    个.你知道图象与x轴的交点个数与什么有关吗?
另外,能否利用二次函数 的图象寻找方程 ,不等式 或 的解?
[实践与探索]       
例1.画出函数 的图象,根据图象回答下列问题.
(1)图象与x轴、y轴的交点坐标分别是什么?
(2)当x取何值时,y=0?这里x的取值与方程 有什么关系?
(3)x取什么值时,函数值y大于0?x取什么值时,函数值y小于0?
解  图象如图26.3.4,
(1)图象与x轴的交点坐标为(-1,0)、(3,0),与y轴的交点坐标为(0,-3).
(2)当x= -1或x=3时,y=0,x的取值与方程 的解相同.
(3)当x<-1或x>3时,y>0;当 -1<x<3时,y<0.



回顾与反思  (1)二次函数图象与x轴的交点问题常通过一元二次方程的根的问题来解决;反过来,一元二次方程的根的问题,又常用二次函数的图象来解决.
(2)利用函数的图象能更好地求不等式的解集,先观察图象,找出抛物线与x轴的交点,再根据交点的坐标写出不等式的解集.
例2.(1)已知抛物线 ,当k=          时,抛物线与x轴相交于两点.
(2)已知二次函数 的图象的最低点在x轴上,则a=        .
(3)已知抛物线 与x轴交于两点A(α,0),B(β,0),且 ,则k的值是         .
分析  (1)抛物线 与x轴相交于两点,相当于方程 有两个不相等的实数根,即根的判别式⊿>0.
(2)二次函数 的图象的最低点在x轴上,也就是说,方程 的两个实数根相等,即⊿=0.
(3)已知抛物线 与x轴交于两点A(α,0),B(β,0),即α、β是方程 的两个根,又由于 ,以及 ,利用根与系数的关系即可得到结果.
请同学们完成填空.
回顾与反思  二次函数的图象与x轴有无交点的问题,可以转化为一元二次方程有无实数根的问题,这可从计算根的判别式入手.
例3.已知二次函数 ,
(1)试说明:不论m取任何实数,这个二次函数的图象必与x轴有两个交点;
(2)m为何值时,这两个交点都在原点的左侧?
(3)m为何值时,这个二次函数的图象的对称轴是y轴?
分析  (1)要说明不论m取任何实数,二次函数 的图象必与x轴有两个交点,只要说明方程 有两个不相等的实数根,即⊿>0.
(2)两个交点都在原点的左侧,也就是方程 有两个负实数根,因而必须符合条件①⊿>0,② ,③ .综合以上条件,可解得所求m的值的范围.
(3)二次函数的图象的对称轴是y轴,说明方程 有一正一负两个实数根,且两根互为相反数,因而必须符合条件①⊿>0,② .
解  (1)⊿= ,由 ,得 ,所以⊿>0,即不论m取任何实数,这个二次函数的图象必与x轴有两个交点.
(2)由 ,得 ;由 ,得 ;又由(1),⊿>0,因此,当 时,两个交点都在原点的左侧.
(3)由 ,得m=2,因此,当m=2时,二次函数的图象的对称轴是y轴.
探索  第(3)题中二次函数的图象的对称轴是y轴,即二次函数 是由函数 上下平移所得,那么,对一次项系数有何要求呢?请你根据它入手解本题.
[当堂课内练习]
1.已知二次函数 的图象如图,
则方程 的解是           ,
不等式 的解集是          ,
不等式 的解集是          .
2.抛物线 与y轴的交点坐标为           ,与x轴的交点坐标为                .
3.已知方程 的两根是 ,-1,则二次函数
回复

使用道具 举报

10#
 楼主| 发表于 2011-2-6 12:26:00 | 只看该作者
与x轴的两个交点间的距离为        .
4.函数 的图象与x轴有且只有一个交点,求a的值及交点坐标.
[本课课外作业]
A组
1.已知二次函数 ,画出此抛物线的图象,根据图象回答下列问题.
(1)方程 的解是什么?
(2)x取什么值时,函数值大于0?x取什么值时,函数值小于0?
2.如果二次函数 的顶点在x轴上,求c的值.
3.不论自变量x取什么数,二次函数 的函数值总是正值,求m的取值范围.
4.已知二次函数 ,
求:(1)此函数图象的开口方向、对称轴和顶点坐标,并画出草图;
   (2)以此函数图象与x轴、y轴的交点为顶点的三角形面积;
   (3)x为何值时,y>0.
5.你能否画出适当的函数图象,求方程 的解?
B组
6.函数 (m是常数)的图象与x轴的交点有                (    )
A.0个       B.1个       C.2个       D.1个或2个
7.已知二次函数 .
(1)说明抛物线 与x轴有两个不同交点;
(2)求这两个交点间的距离(关于a的表达式);
(3)a取何值时,两点间的距离最小?
[本课学习体会]


26 . 3  实践与探索(4)
[本课知识要点]
掌握一元二次方程及二元二次方程组的图象解法.
[MM及创新思维]
上节课的作业第5题:画图求方程 的解,你是如何解决的呢?我们来看一看两位同学不同的方法.
甲:将方程 化为 ,画出 的图象,观察它与x轴的交点,得出方程的解.
乙:分别画出函数 和 的图象,观察它们的交点,把交点的横坐标作为方程的解.
你对这两种解法有什么看法?请与你的同学交流.
[实践与探索]       
例1.利用函数的图象,求下列方程的解:
(1)  ;
(2) .
分析  上面甲乙两位同学的解法都是可行的,但乙的方法要来得简便,因为画抛物线远比画直线困难,所以只要事先画好一条抛物线 的图象,再根据待解的方程,画出相应的直线,交点的横坐标即为方程的解.
解  (1)在同一直角坐标系中画出
函数 和 的图象,
如图26.3.5,
得到它们的交点(-3,9)、(1,1),
则方程 的解为 –3,1.



(2)先把方程 化为
,然后在同一直角
坐标系中画出函数 和  
的图象,如图26.3.6,
得到它们的交点( , )、(2,4),
则方程 的解为  ,2.  
回顾与反思  一般地,求一元二次方程 的近似解时,可先将方程 化为 ,然后分别画出函数 和 的图象,得出交点,交点的横坐标即为方程的解.
例2.利用函数的图象,求下列方程组的解:
(1) ;                      (2) .
分析  (1)可以通过直接画出函数 和 的图象,得到它们的交点,从而得到方程组的解;(2)也可以同样解决.
解  (1)在同一直角坐标系中画出函数 和 的图象,如图26.3.7,
得到它们的交点( , )、(1,1),
则方程组 的解为 .

(2)在同一直角坐标系中画出函数 和 的图象,如图26.3.8,
得到它们的交点(-2,0)、(3,15),则方程组 的解为 .

探索  (2)中的抛物线画出来比较麻烦,你能想出更好的解决此题的方法吗?比如利用抛物线 的图象,请尝试一下.
[当堂课内练习]
1.利用函数的图象,求下列方程的解:
(1) (精确到0.1) ;
(2) .
2.利用函数的图象,求方程组 的解:
[本课课外作业]
A组
1.利用函数的图象,求下列方程的解:
(1)                          (2)
2.利用函数的图象,求下列方程组的解:
(1) ;                (2) .
B组
3.如图所示,二次函数 与 的图象交于A(-2,4)、B(8,2).求能使 成立的x的取值范围。

[本课学习体会]




第二十六章小结与复习
一、本章学习回顾
1.        知识结构







2.学习要点
(1)能结合实例说出二次函数的意义。
(2)能写出实际问题中的二次函数的关系式,会画出它的图象,说出它的性质。
(3)掌握二次函数的平移规律。
(4)会通过配方法确定抛物线的开口方向、对称轴和顶点坐标和最值。
(5)会用待定系数法灵活求出二次函数关系式。
(6)熟悉二次函数与一元二次方程及方程组的关系。
(7)会用二次函数的有关知识解决实际生活中的问题。
3.需要注意的问题
在学习二次函数时,要注重数形结合的思想方法。在二次函数图象的平移变化中,在用待定系数法求二次函数关系式的过程中,在利用二次函数图象求解方程与方程组时,都体现了数形结合的思想。
二、本章复习题
A组
一、填空题
1.已知函数 ,当m=        时,它是二次函数;当m=       时,抛物线的开口向上;当m=         时,抛物线上所有点的纵坐标为非正数.
2.抛物线 经过点(3,-1),则抛物线的函数关系式为                 .
3.抛物线 ,开口向下,且经过原点,则k=      .
4.点A(-2,a)是抛物线 上的一点,则a=         ; A点关于原点的对称点B是          ;A点关于y轴的对称点C是          ;其中点B、点C在抛物线 上的是      .
5.若抛物线 的顶点在x轴上,则c的值是        .
6.把函数 的图象向左平移2个单位,再向下平移3个单位,所得新图象的函数关系式为                   .
7.已知二次函数 的最小值为1,那么m的值等于         .
8.二次函数 的图象在x轴上截得的两交点之间的距离为          .
9.抛物线 的对称轴是         
回复

使用道具 举报

11#
 楼主| 发表于 2011-2-6 12:26:00 | 只看该作者
,根据图象可知,当x         时,y随x的增大而减小.
10.已知抛物线的顶点在原点,对称轴是y轴,且经过点(-2,-2),则抛物线的函数关系式为              .
11.若二次函数 的图象经过点(2,0)和点(0,1),则函数关系式为              .
12.抛物线 的开口方向向    ,顶点坐标是        ,对称轴是        ,与x轴的交点坐标是                 ,与y轴的交点坐标是          ,当x=      时,y有最    值是       .
13.抛物线 与x轴的两个交点坐标分别为 , ,若 ,那么c值为       ,抛物线的对称轴为            .
14.已知函数 .当m        时,函数的图象是直线;当m
          时,函数的图象是抛物线;当m        时,函数的图象是开口向上,且经过原点的抛物线.
15.一条抛物线开口向下,并且与x轴的交点一个在点A(1,0)的左边,一个在点A(1,0)的右边,而与y轴的交点在x轴下方,写出这条抛物线的函数关系式                 .
二、选择题
16.下列函数中,是二次函数的有                                          (     )
①    ②    ③    ④
A、1个            B、2个            C、3个            D、4个
17.若二次函数 的图象经过原点,则m的值必为    (     )
A、-1或3          B、-1              C、3              D、无法确定
18.二次函数 的图象与x轴                         (     )
A、没有交点        B、只有一个交点   C、只有两个交点   D、至少有一个交点
19.二次函数 有(     )
A、最大值1         B、最大值2       C、最小值1        D、最小值2
20.在同一坐标系中,作函数 , , 的图象,它们的共同特点是
                                                                       (D   )
A、都是关于x轴对称,抛物线开口向上
B、都是关于y轴对称,抛物线开口向下
C、都是关于原点对称,抛物线的顶点都是原点
D、都是关于y轴对称,抛物线的顶点都是原点
21.已知二次函数 的图象和x轴有交点,则k的取值范围是    (     )
A、                            B、 且
C、                            D、 且
22.二次函数 的图象可由 的图象                  (     )
A.向左平移1个单位,再向下平移2个单位得到
B.向左平移1个单位,再向上平移2个单位得到
C.向右平移1个单位,再向下平移2个单位得到
D.向右平移1个单位,再向上平移2个单位得到
23.某旅社有100张床位,每床每晚收费10元时,客床可全部租出.若每床每晚收费提高2元,则减少10张床位租出;若每床每晚收费再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去.为了投资少而获利大,每床每晚应提高          (     )
A、4元或6元          B、4元              C、6元              D、8元
24.若抛物线 的所有点都在x轴下方,则必有                (     )
A、                  B、
C、                  D、  
25.抛物线 的顶点关于原点对称的点的坐标是                (     )
A、(-1,3)          B、(-1,-3)          C、(1,3)          D、(1,-3)
三、解答题
26.已知二次函数 .
(1)写出抛物线的开口方向、顶点坐标、对称轴、最大或最小值;
(2)求抛物线与x轴、y轴的交点;
(3)作出函数图象的草图;
(4)观察图象,x为何值时,y>0;x为何值时,y= 0;x为何值时,y<0?
27.已知抛物线过(0,1)、(1,0)、(-1,1)三点,求它的函数关系式.
28.已知二次函数,当x=2时,y有最大值5,且其图象经过点(8,-22),求此二次函数的函数关系式.
29.已知二次函数的图象与x轴交于A(-2,0),B(3,0)两点,且函数有最大值2.
(1)求二次函数的函数关系式;
(2)设此二次函数图象的顶点为P,求⊿ABP的面积.
30.利用函数的图象,求下列方程(组)的解:
(1) ;                   (2) .
31.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数:m=162-3x.
(1)写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数关系式;
(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?
B组
一、选择题
32.若所求的二次函数的图象与抛物线 有相同的顶点,并且在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小,则所求二次函数的函数关系式为                                                               (  D  )
A、                    B、
C、                   D、
33.二次函数 ,当x=1时,函数y有最大值,设 ,( 是这个函数图象上的两点,且 ,则                              (     )
A、                       B、
C、                       D、
34.若关于x的不等式组 无解,则二次函数 的图象与x轴                                                                      (     )
A、没有交点                           B、相交于两点
回复

使用道具 举报

12#
 楼主| 发表于 2011-2-6 12:26:00 | 只看该作者
C、相交于一点                         D、相交于一点或没有交点
二、解答题
35.若抛物线 的顶点在x轴的下方,求m的值.
36.把抛物线 的图象向左平移3个单位,再向下平移2个单位,所得图象的解析式是 ,求m、n.
37.如图,已知抛物线 ,与x轴交于A、B,且点A在x轴正半轴上,点B在x轴负半轴上,OA=OB,
(1)求m的值;
(2)求抛物线关系式,并写出对称轴和顶点C的坐标.
38.有一个二次函数的图象,三位学生分别说出了它的一些特点:
甲:对称轴是直线x=4;
乙:与x轴两个交点的横坐标都是整数;
丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.
请写出满足上述全部特点的一个二次函数的关系式.
C组
解答题
39.如图,已知二次函数 ,当x=3时,
有最大值4.
(1)求m、n的值;
(2)设这个二次函数的图象与x轴的交点是A、B,
求A、B点的坐标;
(3)当y<0时,求x的取值范围;
(4)有一圆经过A、B,且与y轴的正半轴相切于点C,
求C点坐标.
40.阅读下面的文字后,解答问题.
    有这样一道题目:“已知二次函数y=ax2+bx+c的图象经过点A(0,a) 、B(1,-2)、 、                ,求证:这个二次函数图象的对称轴是直线x=2.”题目中的矩形框部分是一段被墨水污染了无法辨认的文字.
(1)根据现有信息,你能否求出题目中二次函数的解析式? 若能,写出求解过程,若不能请说明理由;
(2)请你根据已有信息,在原题中的矩形框内,填上一个适当的条件,把原题补充完整.
41.已知开口向下的抛物线 与x轴交于两点A( ,0)、B( ,0),其中 < ,P为顶点,∠APB=90°,若 、 是方程 的两个根,且 .
(1)求A、B两点的坐标;
(2)求抛物线的函数关系式.
42.已知二次函数 的图象如图所示.
(1)当m≠-4时,说明这个二次函数的图象与x轴必有两个交点;
(2)求m的取值范围;
(3)在(2)的情况下,若 ,求C点坐标;
(4)求A、B两点间的距离;
(5)求⊿ABC的面积S.

第二十六章自我检测题
(时间45分钟,满分100分)
一、精心选一选(每题4分,共20分)
1.抛物线 的顶点坐标是                                         (     )
A、(2,0)          B、(-2,0)          C、(1,-3)          D、(0,-4)
2.若(2,5)、(4,5)是抛物线 上的两个点,则它的对称轴是 (     )
A、           B、             C、             D、  
3.已知反比例函数 ,当x<0时,y随x的增大而减小,则函数 的图象经过的象限是                                                    (     )
A、第三、四象限                        B、第一、二象限   
C、第二、三、四象限                    D、第一、二、三象限
4.抛物线 与x轴的两个交点为(-1,0),(3,0),其形状与抛物线 相同,则 的函数关系式为                                 (     )
A、                     B、
C、                    D、
5.把抛物线 向左平移2个单位,再向上平移3个单位,得到抛物线 ,则                                                     (     )
A、b=2,c= -2       B、b= -6,c=6       C、b= -8,c=14       D、b= -8,c=18
二、细心填一填(每空3分,共45分)
6.若 是二次函数,则m=       。
7.二次函数 的开口     ,对称轴是             。
8.抛物线 的最低点坐标是          ,当x        时,y随x的增大而增大。
9.已知二次函数 的图象经过点(1,-1),则这个二次函数的关系式为           ,它与x轴的交点的个数为     个。
10.若y与 成正比例,当x=2时,y=4,那么当x= -3时,y的值为       。
11.抛物线 与y轴的交点坐标是       ,与x轴的交点坐标是           。
12.有一长方形条幅,长为a m,宽为b m,四周镶上宽度相等的花边,求剩余面积S(m2)与花边宽度x(m)之间的函数关系式为                        ,自变量x的取值范围为               。
13.抛物线 与直线 只有一个公共点,则b=       。
14.已知抛物线 与x轴交点的横坐标为 –1,则 =      。
15.已知点A(1,4)和B(2,2),试写出过A、B两点的二次函数的关系式(任写两个)
                       、                      。
三、认真答一答(第17题8分,其余各9分)
16.已知二次函数 的图象经过点(3,2)。
(1)求这个二次函数的关系式;
(2)画出它的图象,并指出图象的顶点坐标;
(3)当x>0时,求使y≥2的x的取值范围。







17.根据下列条件,求二次函数的关系式:
(1)抛物线经过点(0,3)、(1,0)、(3,0);
(2)抛物线顶点坐标是(-1,-2),且经过点(1,10)。







18.已知抛物线 与x轴的一个交点为A(-1,0)。
(1)求抛物线与x轴的另一个交点B的坐标;
(2)D是抛物线与y轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD的面积为9,求此抛物线的函数关系式。





回复

使用道具 举报

13#
 楼主| 发表于 2011-2-6 12:27:00 | 只看该作者
19.有一种螃蟹,从海上捕获后不放养,最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变。现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元。据测算,此后每千克活蟹的市场价每天可上升1元,但放养一天需各种费用400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价是每千克20元。
(1)设x天后每千克活蟹的市场价为P元,写出P关于x的函数关系式;
(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售总额Q元,写出Q关于x的函数关系式;
(3)该经销商将这批蟹放养多少天后出售,可获得最大利润(利润=销售总额-收购成本-费用)?最大利润是多少?



相  似  形
图形的相似

教学目标
通过一些相似的实例,让生观察相似图形的特点,感受形状相同的意义,理解相似图形的概念.能通过观察识别出相似的图形.能根据直觉在格点图中画出已知图形的相似图形.
在获得知识的过程中培养学习的自信心.
教学重点
    引导学生通过观察识别相似的图形,培养学生的观察分析及归纳能力.
教学难点
    理解相似图形的概念.
教学过程
一、观察课本第 页图 、图 ,每组图形中的两图之间有什么关系?
二、归纳:
每组图形中的两个图形形状相同,大小不同.
具有相同形状的图形叫相似图形.
师可结合实例说明:
⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关.
⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况.
⑶我们可以这样理解相似形:
两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.
⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.
三、你还见过哪些相似的图形?请举出一些例子与同学们交流.
四、观察课本第 页图 中的三组图形,它们是否相似形?为什么?
五、想一想:
放大镜下的图形与原来的图形相似吗?
放大镜下的角与原来图形中的角是什么关系?
可让学生动手实验,然后讨论得出结论.
六、观察课本第 页图 中的三组图形,它们是否相似形?为什么?
  让学生通过比较图 与图 ,体会相似图形与不相似图形的“形状”特点.
七、课本第 页“试一试”.
让生各自独立完成作图,再展示评析.
八、巩固:
⒈课本第 页练习.
⒉课本第 页习题 .
对于第 题,学生的判断是对相似图形的一种直观认识,最好让学生充分交流彼此的看法.
九、小结:
你通过这节课的学习,有哪些收获?
十、作业:略.


相似三角形

教学目标:使学生掌握相似三角形的判定与性质
教学重点:相似三角形的判定与性质
教学过程:
一 知识要点:
1、相似形、成比例线段、黄金分割
相似形:形状相同、大小不一定相同的图形。特例:全等形。
相似形的识别:对应边成比例,对应角相等。
成比例线段(简称比例线段):对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即 (或a:b=c:d),那么,这四条线段叫做成比例线段,简称比例线段。
  黄金分割:将一条线段分割成大小两条线段,若小段与大段的长度之比等于大段与全长之比,则可得出这一比值等于0?618…。这种分割称为黄金分割,点P叫做线段AB的黄金分割点,较长线段叫做较短线段与全线段的比例中项。
例1:(1)放大镜下的图形和原来的图形相似吗?
   (2)哈哈镜中的形象与你本人相似吗?
   (3)你能举出生活中的一些相似形的例子吗/
例2:判断下列各组长度的线段是否成比例:
(1)2厘米,3厘米,4厘米,1厘米
(2)1?5厘米,2?5厘米,4?5厘米,6?5厘米
(3)1?1厘米,2?2厘米,3?3厘米,4?4厘米
(4)1厘米, 2厘米,2厘米,4厘米。
例3:某人下身长90厘米,上身长70厘米,要使整个人看上去成黄金分割,需穿多高的高跟鞋?
例4:等腰三角形都相似吗?
矩形都相似吗?
正方形都相似吗?
2、相似形三角形的判断:
a两角对应相等
b两边对应成比例且夹角相等
c三边对应成比例
3、相似形三角形的性质:
a对应角相等
b对应边成比例







c对应线段之比等于相似比
d周长之比等于相似比
e面积之比等于相似比的平方

4、相似形三角形的应用:
计算那些不能直接测量的物体的高度或宽度以及等份线段


例题
1:如图所示,  ABCD中,G是BC延长线上一点,AG交BD于点E,交DC于点F,试找出图中所有的相似三角形


2如图在正方形网格上有6个斜三角形:a :ABC; b: BCD   c: BDE  d: BFG  e: FGH  f:  EFK,试找出与三角形a相似的三角形




3、在   ABC中,AB=8厘米,BC=16厘米,点P从点A开始沿AB边向点B以2厘米每秒的速度移动,点Q从点B开始沿BC向点C以4厘米每秒的速度移动,如果P、Q分别从A、B同时出发,经几秒钟   PBQ与  ABC相似?





4、某房地产公司要在一块矩形ABCD土地上规划建设一个矩形GHCK小区公园(如图),为了使文物保护区  AEF不被破坏,矩形公园的顶点G不能在文物保护区内。已知AB=200米,AD=160米,AF=40米,AE=60米。
(1)当矩形小区公园的顶点G恰是EF的中点时,求公园的面积;
(2)当G是EF上什么位置时,公园面积最大?








回复

使用道具 举报

14#
 楼主| 发表于 2011-2-6 12:27:00 | 只看该作者
同步练习:
1.已知:AB=2,M是的黄金分割点,
(1)        求AM的长;(2)求AM:MB


2.已知:x:y:z=2:3:4, 求:
(1)         (2) (3)若2x-3y+z=-2求x,y,z的


3.已知: ,求k的值。



4.已知:△ ABC中,AD=AE,DE交BC延长线于F,求证:BF?CE=CF?BD。







5.如图:已知CD∥EF∥GH∥AB,AB=16,CD=10,DE∶EG∶GA=1∶2∶3,求EF+GH。








6.如图,已知:CD∶DA=BE∶ED=2∶1,
求BF∶FC及AE∶EF。





7.如图,在直角坐标系中有两点A(4,0),B(0,2),如果点C在x轴上,(C与A不重合),当由点B,O,C组成的三角形与三角形AOB相似时,求点C的坐标?










8.如图,在四边形ABCD中,E是AB上一点,EC平行AD,DE平行BC,若三角形BEC的面积=1,三角形ADE的面积=3,求三角形CDE的面积
























位似图形教案
                                      
教学目标:
1、知识目标:
①了解位似图形及其有关概念;
②了解位似图形上任意一对对应点到位似中心的距离之比等于位似比。
2、能力目标:
①利用图形的位似解决一些简单的实际问题;
②在有关的学习和运用过程中发展学生的应用意识和动手操作能力。
3、情感目标:
①通过学习培养学生的合作意识;
②通过探究提高学生学习数学的兴趣。
教学重点:
探索并掌握位似图形的定义和性质;
教学难点:
运用定义和性质进行简单的位似图形的证明和计算。
教学方法:
从学生生活经验和已有的知识出发,采用引导、启发、合作、探究等方法,经历观察、发现、动手操作、归纳、交流等数学活动,获得知识,形成技能,发展思维,学会学习;提高学生自主探究、合作交流和分析归纳能力;同时在教学过程对不同层次的学生进行分类指导,让每个学生都得到充分的发展。
教学准备:
刻度尺、为每个小组准备好打印的五幅位似图形、多媒体展示课件、
教学手段:
小组合作、多媒体辅助教学
教学设计说明:
1、为了便于学生理解位似图形的特征,我在设计中特别注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识.
2、探索知识是本节的重点,设计这一环节,通过学生的做、议、读、想、试等环节来完成,把学习的主动权充分放给学生,每一环节及时归纳总结,使学生学有所获,探索创新.
教学过程:
一、创设情境  引入新知
观察大屏幕有五个图形,每个图形中的四边形ABCD和四边形A1B1C1D1 都是相似图形。分别观察着五个图形,你发现每个图形中的两个四边形各对应点的连线有什么特征?

(学生经过小组讨论交流的方式总结得出:)
特点:(1)两个图形相似:
     (2)每组对应点所在的直线交于一点。
二、合作交流  探究新知
请同学们阅读课本58页,掌握什么叫位似图形、位似中心、位似比?
如果两个相似图形的每组对应点所在的直线交于一点,那么这样的两个图形叫做位似图形,这个交点叫做位似中心,这时两个相似图形的相似比又叫做它们的位似比。 议一议     观察上图中的五个图形,回答下列问题:    (1)        在各图形中,位似图形的位似中心与这两个图形有什么位置关系?    (2)        在各图中,任取一对对应点,度量这两个点到位似中心的距离。它们的比与位似比有什么关系?再换一对对应点试一试。 (每小组同学拿出准备好的位似图形通过观察、测量试验和计算得出:)
位似图形对应点到位似中心的距离之比等于相似比。 由此得出:
位似图形的对应点和位似中心在同一条直线上,它们到位似中心的距离之比等于相似比。 三、指导应用  深化理解
(同学们观察大屏幕出示的问题)
例1如图D,E分别是AB,AC上的点。 (1)如果DE∥BC,那么△ADE和△ABC位似图形吗?为什么? (2)如果△ADE和△ABC是位似图形,那么DE∥BC吗?为什么? 小组讨论如何解这道题:问题1,证位似图形的根据是什么?需要哪几个条件?
根据是位似图形的定义。
需要两个条件:
!、△ADE和△ABC相似;
2、对应点所在的直线交于一点。
问题2:已知△ADE和△ABC是位似图形,我们根据什么又能得出什么结论?
根据位似图形的性质得出:
1、对应点和位似中心在同一条直线上;
2、它们到位似中心的距离之比等于相似比。
(一生口述师板书:)
解:(1)△ADE和△ABC是位似图形.理由是:
∵DE∥BC
∴∠AED=∠B, ∠AED=∠C.
∵△ADE∽△ABC.
又∵点A是△ADE和△ABC的公共点,点D和点B是对应点,点E和点C是对应点,直线BD与CE交于点A,
∴△ADE和△ABC是位似图形。
(2)DE∥BC.理由是:
∵△ADE和△ABC是位似图形
∴△ADE∽△ABC.
∴∠ADE=∠B,
∴DE∥BC.
四、继续观察  拓展提高
(同学们继续观察屏幕展示的图形)
在图(1)——(5)中,位似图形的对应线段AB与A1B1是否平行?BC与B1C1,CD与C1D1,AD与A1D1是否平行?为什么?
同桌观察探究并发言:对应边平行或在同一条直线上。
(出示课件:展示一组位似图形,动画闪动图形的对应边,直观展示位似图形的对应边平行或在同一条直线上)
五、反馈练习  落实新知
挑战自我:
1、下面每组图形中都有两个图形.
(1)哪一组中的每两个图形是位似图形?
(2)作出位似图形的位似中心

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2024-11-25 23:34

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表