|
同步练习:
1.已知:AB=2,M是的黄金分割点,
(1) 求AM的长;(2)求AM:MB
2.已知:x:y:z=2:3:4, 求:
(1) (2) (3)若2x-3y+z=-2求x,y,z的
3.已知: ,求k的值。
4.已知:△ ABC中,AD=AE,DE交BC延长线于F,求证:BF?CE=CF?BD。
5.如图:已知CD∥EF∥GH∥AB,AB=16,CD=10,DE∶EG∶GA=1∶2∶3,求EF+GH。
6.如图,已知:CD∶DA=BE∶ED=2∶1,
求BF∶FC及AE∶EF。
7.如图,在直角坐标系中有两点A(4,0),B(0,2),如果点C在x轴上,(C与A不重合),当由点B,O,C组成的三角形与三角形AOB相似时,求点C的坐标?
8.如图,在四边形ABCD中,E是AB上一点,EC平行AD,DE平行BC,若三角形BEC的面积=1,三角形ADE的面积=3,求三角形CDE的面积
位似图形教案
教学目标:
1、知识目标:
①了解位似图形及其有关概念;
②了解位似图形上任意一对对应点到位似中心的距离之比等于位似比。
2、能力目标:
①利用图形的位似解决一些简单的实际问题;
②在有关的学习和运用过程中发展学生的应用意识和动手操作能力。
3、情感目标:
①通过学习培养学生的合作意识;
②通过探究提高学生学习数学的兴趣。
教学重点:
探索并掌握位似图形的定义和性质;
教学难点:
运用定义和性质进行简单的位似图形的证明和计算。
教学方法:
从学生生活经验和已有的知识出发,采用引导、启发、合作、探究等方法,经历观察、发现、动手操作、归纳、交流等数学活动,获得知识,形成技能,发展思维,学会学习;提高学生自主探究、合作交流和分析归纳能力;同时在教学过程对不同层次的学生进行分类指导,让每个学生都得到充分的发展。
教学准备:
刻度尺、为每个小组准备好打印的五幅位似图形、多媒体展示课件、
教学手段:
小组合作、多媒体辅助教学
教学设计说明:
1、为了便于学生理解位似图形的特征,我在设计中特别注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识.
2、探索知识是本节的重点,设计这一环节,通过学生的做、议、读、想、试等环节来完成,把学习的主动权充分放给学生,每一环节及时归纳总结,使学生学有所获,探索创新.
教学过程:
一、创设情境 引入新知
观察大屏幕有五个图形,每个图形中的四边形ABCD和四边形A1B1C1D1 都是相似图形。分别观察着五个图形,你发现每个图形中的两个四边形各对应点的连线有什么特征?
(学生经过小组讨论交流的方式总结得出:)
特点:(1)两个图形相似:
(2)每组对应点所在的直线交于一点。
二、合作交流 探究新知
请同学们阅读课本58页,掌握什么叫位似图形、位似中心、位似比?
如果两个相似图形的每组对应点所在的直线交于一点,那么这样的两个图形叫做位似图形,这个交点叫做位似中心,这时两个相似图形的相似比又叫做它们的位似比。 议一议 观察上图中的五个图形,回答下列问题: (1) 在各图形中,位似图形的位似中心与这两个图形有什么位置关系? (2) 在各图中,任取一对对应点,度量这两个点到位似中心的距离。它们的比与位似比有什么关系?再换一对对应点试一试。 (每小组同学拿出准备好的位似图形通过观察、测量试验和计算得出:)
位似图形对应点到位似中心的距离之比等于相似比。 由此得出:
位似图形的对应点和位似中心在同一条直线上,它们到位似中心的距离之比等于相似比。 三、指导应用 深化理解
(同学们观察大屏幕出示的问题)
例1如图D,E分别是AB,AC上的点。 (1)如果DE∥BC,那么△ADE和△ABC位似图形吗?为什么? (2)如果△ADE和△ABC是位似图形,那么DE∥BC吗?为什么? 小组讨论如何解这道题:问题1,证位似图形的根据是什么?需要哪几个条件?
根据是位似图形的定义。
需要两个条件:
!、△ADE和△ABC相似;
2、对应点所在的直线交于一点。
问题2:已知△ADE和△ABC是位似图形,我们根据什么又能得出什么结论?
根据位似图形的性质得出:
1、对应点和位似中心在同一条直线上;
2、它们到位似中心的距离之比等于相似比。
(一生口述师板书:)
解:(1)△ADE和△ABC是位似图形.理由是:
∵DE∥BC
∴∠AED=∠B, ∠AED=∠C.
∵△ADE∽△ABC.
又∵点A是△ADE和△ABC的公共点,点D和点B是对应点,点E和点C是对应点,直线BD与CE交于点A,
∴△ADE和△ABC是位似图形。
(2)DE∥BC.理由是:
∵△ADE和△ABC是位似图形
∴△ADE∽△ABC.
∴∠ADE=∠B,
∴DE∥BC.
四、继续观察 拓展提高
(同学们继续观察屏幕展示的图形)
在图(1)——(5)中,位似图形的对应线段AB与A1B1是否平行?BC与B1C1,CD与C1D1,AD与A1D1是否平行?为什么?
同桌观察探究并发言:对应边平行或在同一条直线上。
(出示课件:展示一组位似图形,动画闪动图形的对应边,直观展示位似图形的对应边平行或在同一条直线上)
五、反馈练习 落实新知
挑战自我:
1、下面每组图形中都有两个图形.
(1)哪一组中的每两个图形是位似图形?
(2)作出位似图形的位似中心
|
|