|
沙发
楼主 |
发表于 2011-2-6 12:25:00
|
只看该作者
2.具有初步的创新精神和实践能力.
教学重点
1.体会方程与函数之间的联系.
2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.
教学难点
1.探索方程与函数之间的联系的过程.
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.
教学过程
Ⅰ.创设问题情境,引入新课
1.我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数)y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.
现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?
2.选教材提出的问题,直接引入新课
Ⅱ.合作交流 解读探究
1.二次函数与一元二次方程之间的关系
探究:教材问题
师生同步完成.
观察:教材22页,学生小组交流.
归纳:先由学生完成,然后师生评价,最后教师归纳.
Ⅲ.应用迁移 巩固提高
1 .根据二次函数图像看一元二次方程的根
同期声
2 .抛物线与x轴的交点情况求待定系数的范围.
3 .根据一元二次方程根的情况来判断抛物线与x轴的交点情况
Ⅳ.总结反思 拓展升华
本节课学了如下内容:
1.经历了探索二次函数与一元:二次方程的关系的过程,体会了方程与函数之间的联系.
2.理解了二次函数与x轴交点的个数
与一元二次方程的根的个数之间的关系,理解了何时方程有两个不等的实根,两个相等的实根和没有实根.
3.数学方法:分类讨论和数形结合.
反思:在判断抛物线与x轴的交点情况时,和抛物线中的二次项系数的正负有无关系?
拓展:教案
Ⅴ.课后作业P231.3.5
26.2 二次函数的图象与性质(1)
[本课知识要点]
会用描点法画出二次函数 的图象,概括出图象的特点及函数的性质.
[MM及创新思维]
我们已经知道,一次函数 ,反比例函数 的图象分别是 、
,那么二次函数 的图象是什么呢?
(1)描点法画函数 的图象前,想一想,列表时如何合理选值?以什么数为中心?当x取互为相反数的值时,y的值如何?
(2)观察函数 的图象,你能得出什么结论?
[实践与探索]
例1.在同一直角坐标系中,画出下列函数的图象,并指出它们有何共同点?有何不同点?
(1) (2)
解 列表
x … -3 -2 -1 0 1 2 3 …
… 18 8 2 0 2 8 18 …
… -18 -8 -2 0 -2 -8 -18 …
分别描点、连线,画出这两个函数的图象,这两个函数的图象都是抛物线,如图26.2.1.
共同点:都以y轴为对称轴,顶点都在坐标原点.
不同点: 的图象开口向上,顶点是抛物线的最低点,在对称轴的左边,曲线自左向右下降;在对称轴的右边,曲线自左向右上升.
的图象开口向下,顶点是抛物线的最高点,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降.
回顾与反思 在列表、描点时,要注意合理灵活地取值以及图形的对称性,因为图象是抛物线,因此,要用平滑曲线按自变量从小到大或从大到小的顺序连接.
例2.已知 是二次函数,且当 时,y随x的增大而增大.
(1)求k的值;
(2)求顶点坐标和对称轴.
解 (1)由题意,得 , 解得k=2.
(2)二次函数为 ,则顶点坐标为(0,0),对称轴为y轴.
例3.已知正方形周长为Ccm,面积为S cm2.
(1)求S和C之间的函数关系式,并画出图象;
(2)根据图象,求出S=1 cm2时,正方形的周长;
(3)根据图象,求出C取何值时,S≥4 cm2.
分析 此题是二次函数实际应用问题,解这类问题时要注意自变量的取值范围;画图象时,自变量C的取值应在取值范围内.
解 (1)由题意,得 .
列表:
C 2 4 6 8 …
1
4 …
描点、连线,图象如图26.2.2.
(2)根据图象得S=1 cm2时,正方形的周长是4cm.
(3)根据图象得,当C≥8cm时,S≥4 cm2.
回顾与反思
(1)此图象原点处为空心点.
(2)横轴、纵轴字母应为题中的字母C、S,不要习惯地写成x、y.
(3)在自变量取值范围内,图象为抛物线的一部分.
[当堂课内练习]
1.在同一直角坐标系中,画出下列函数的图象,并分别写出它们的开口方向、对称轴和顶点坐标.
(1) (2) (3)
2.(1)函数 的开口 ,对称轴是 ,顶点坐标是 ;
(2)函数 的开口 ,对称轴是 ,顶点坐标是 .
3.已知等边三角形的边长为2x,请将此三角形的面积S表示成x的函数,并画出图象的草图.
[本课课外作业]
A组
1.在同一直角坐标系中,画出下列函数的图象.
(1) (2)
2.填空:
(1)抛物线 ,当x= 时,y有最 值,是 .
(2)当m= 时,抛物线 开口向下.
(3)已知函数 是二次函数,它的图象开口 ,当x 时,y随x的增大而增大.
3.已知抛物线 中,当 时,y随x的增大而增大.
(1)求k的值; (2)作出函数的图象(草图).
4.已知抛物线 经过点(1,3),求当y=9时,x的值.
B组
|
|