绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

楼主: admin
打印 上一主题 下一主题

人教版初中八年级数学下册全册教案合集下载

[复制链接]
8#
 楼主| 发表于 2011-2-6 12:15:00 | 只看该作者
例1.(补充)若点A(-2,a)、B(-1,b)、C(3,c)在反比例函数 (k<0)图象上,则a、b、c的大小关系怎样?
分析:由k<0可知,双曲线位于第二、四象限,且在每一象限内,y随x的增大而增大,因为A、B在第二象限,且-1>-2,故b>a>0;又C在第四象限,则c<0,所以
b>a>0>c
说明:由于双曲线的两个分支在两个不同的象限内,因此函数y随x的增减性就不能连续的看,一定要强调“在每一象限内”,否则,笼统说k<0时y随x的增大而增大,就会误认为3最大,则c最大,出现错误。
此题还可以画草图,比较a、b、c的大小,利用图象直观易懂,不易出错,应学会使用。
例2. (补充)如图,   一次函数y=kx+b的图象与反比例函数 的图象交于A(-2,1)、B(1,n)两点
(1)求反比例函数和一次函数的解析式
(2)根据图象写出一次函数的值大于反比例函数的值的x的取值范围
分析:因为A点在反比例函数的图象上,可先求出反比例函数的解析式 ,又B点在反比例函数的图象上,代入即可求出n的值,最后再由A、B两点坐标求出一次函数解析式y=-x-1,第(2)问根据图象可得x的取值范围x<-2或0<x<1,这是因为比较两个不同函数的值的大小时,就是看这两个函数图象哪个在上方,哪个在下方。
六、随堂练习
1.若直线y=kx+b经过第一、二、四象限,则函数 的图象在(      )
(A)第一、三象限                    (B)第二、四象限     
(C)第三、四象限                    (D)第一、二象限
2.已知点(-1,y1)、(2,y2)、(π,y3)在双曲线 上,则下列关系式正确的是(      )
(A)y1>y2>y3                    (B)y1>y3>y2     
(C)y2>y1>y3                    (D)y3>y1>y2
七、课后练习
1.已知反比例函数 的图象在每个象限内函数值y随自变量x的增大而减小,且k的值还满足 ≥2k-1,若k为整数,求反比例函数的解析式
2.已知一次函数 的图像与反比例函数 的图像交于A、B两点,且点A的横坐标和点B的纵坐标都是-2 ,
求(1)一次函数的解析式;
  (2)△AOB的面积
答案:
1. 或 或
2.(1)y=-x+2,(2)面积为6
课后反思:



17.2实际问题与反比例函数(1)
一、教学目的
1.利用反比例函数的知识分析、解决实际问题
2.渗透数形结合思想,提高学生用函数观点解决问题的能力
二、重点、难点
1.重点:利用反比例函数的知识分析、解决实际问题
2.难点:分析实际问题中的数量关系,正确写出函数解析式
三、例题的意图分析
教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。
补充例题一是为了巩固反比例函数的有关知识,二是为了提高学生从图象中读取信息的能力,掌握数形结合的思想方法,以便更好地解决实际问题
四、课堂引入
寒假到了,小明正与几个同伴在结冰的河面上溜冰,突然发现前面有一处冰出现了裂痕,小明立即告诉同伴分散趴在冰面上,匍匐离开了危险区。你能解释一下小明这样做的道理吗?
五、例习题分析
例1.见教材第57页
分析:(1)问首先要弄清此题中各数量间的关系,容积为104,底面积是S,深度为d,满足基本公式:圆柱的体积 =底面积×高,由题意知S是函数,d是自变量,改写后所得的函数关系式是反比例函数的形式,(2)问实际上是已知函数S的值,求自变量d的取值,(3)问则是与(2)相反
例2.见教材第58页
分析:此题类似应用题中的“工程问题”,关系式为工作总量=工作速度×工作时间,由于题目中货物总量是不变的,两个变量分别是速度v和时间t,因此具有反比关系,(2)问涉及了反比例函数的增减性,即当自变量t取最大值时,函数值v取最小值是多少?
例1.(补充)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气体体积V(立方米)的反比例函数,其图像如图所示(千帕是一种压强单位)
(1)写出这个函数的解析式;
(2)当气球的体积是0.8立方米时,气球内的气压是多少千帕?
(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?
分析:题中已知变量P与V是反比例函数关系,并且图象经过点A,利用待定系数法可以求出P与V的解析式,得 ,(3)问中当P大于144千帕时,气球会爆炸,即当P不超过144千帕时,是安全范围。根据反比例函数的图象和性质,P随V的增大而减小,可先求出气压P=144千帕时所对应的气体体积,再分析出最后结果是不小于 立方米
六、随堂练习
1.京沈高速公路全长658km,汽车沿京沈高速公路从沈阳驶往北京,则汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间的函数关系式为            
2.完成某项任务可获得500元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式               
回复

使用道具 举报

9#
 楼主| 发表于 2011-2-6 12:16:00 | 只看该作者
3.一定质量的氧气,它的密度 (kg/m3)是它的体积V(m3)的反比例函数,当V=10时, =1.43,(1)求 与V的函数关系式;(2)求当V=2时氧气的密度
答案: = ,当V=2时, =7.15
七、课后练习
1.小林家离工作单位的距离为3600米,他每天骑自行车上班时的速度为v(米/分),所需时间为t(分)
(1)则速度v与时间t之间有怎样的函数关系?
(2)若小林到单位用15分钟,那么他骑车的平均速度是多少?
(2)如果小林骑车的速度最快为300米/分,那他至少需要几分钟到达单位?
答案: ,v=240,t=12
2.学校锅炉旁建有一个储煤库,开学初购进一批煤,现在知道:按每天用煤0.6吨计算,一学期(按150天计算)刚好用完.若每天的耗煤量为x吨,那么这批煤能维持y天
(1)则y与x之间有怎样的函数关系?
(2)画函数图象
(3)若每天节约0.1吨,则这批煤能维持多少天?
课后反思:




17.2实际问题与反比例函数(2)
一、教学目的
1.利用反比例函数的知识分析、解决实际问题
2.渗透数形结合思想,进一步提高学生用函数观点解决问题的能力,体会和认识反比例函数这一数学模型
二、重点、难点
1.重点:利用反比例函数的知识分析、解决实际问题
2.难点:分析实际问题中的数量关系,正确写出函数解析式,解决实际问题
三、例题的意图分析
教材第58页的例3和例4都需要用到物理知识,教材在例题前已给出了相关的基本公式,其中的数量关系具有反比例关系,通过对这两个问题的分析和解决,不但能复习巩固反比例函数的有关知识,还能培养学生应用数学的意识
补充例题是一道综合题,有一定难度,需要学生有较强的识图、分析和归纳等方面的能力,此题既有一次函数的知识,又有反比例函数的知识,能进一步深化学生对一次函数和反比例函数知识的理解和掌握,体会数形结合思想的重要作用,同时提高学生灵活运用函数观点去分析和解决实际问题的能力
四、课堂引入
1.小明家新买了几桶墙面漆,准备重新粉刷墙壁,请问如何打开这些未开封的墙面漆桶呢?其原理是什么?
2.台灯的亮度、电风扇的转速都可以调节,你能说出其中的道理吗?
五、例习题分析
例3.见教材第58页
分析:题中已知阻力与阻力臂不变,即阻力与阻力臂的积为定值,由“杠杆定律”知变量动力与动力臂成反比关系,写出函数关系式,得到函数动力F是自变量动力臂 的反比例函数,当 =1.5时,代入解析式中求F的值;(2)问要利用反比例函数的性质, 越大F越小,先求出当F=200时,其相应的 值的大小,从而得出结果。

例4.见教材第59页
分析:根据物理公式PR=U2,当电压U一定时,输出功率P是电阻R的反比例函数,则 ,(2)问中是已知自变量R的取值范围,即110≤R≤220,求函数P的取值范围,根据反比例函数的性质,电阻越大则功率越小,
得220≤P≤440
例1.(补充)为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:
(1)药物燃烧时,y关于x的函数关系式为        ,自变量x的取值范为        ;
药物燃烧后,y关于x的函数关系式为        .
(2)研究表明,当空气中每立方米的含药量低于1.6毫克时员工方可进办公室,那么从消毒开始,至少需要经过______分钟后,员工才能回到办公室;
(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?
分析:(1)药物燃烧时,由图象可知函数y是x的正比例函数,设 ,将点(8,6)代人解析式,求得 ,自变量0<x≤8;药物燃烧后,由图象看出y是x的反比例函数,设 ,用待定系数法求得
(2)燃烧时,药含量逐渐增加,燃烧后,药含量逐渐减少,因此,只能在燃烧后的某一时间进入办公室,先将药含量y=1.6代入 ,求出x=30,根据反比例函数的图象与性质知药含量y随时间x的增大而减小,求得时间至少要30分钟
(3)药物燃烧过程中,药含量逐渐增加,当y=3时,代入 中,得x=4,即当药物燃烧4分钟时,药含量达到3毫克;药物燃烧后,药含量由最高6毫克逐渐减少,其间还能达到3毫克,所以当y=3时,代入 ,得x=16,持续时间为16-4=12>10,因此消毒有效
六、随堂练习
1.某厂现有800吨煤,这些煤能烧的天数y与平均每天烧的吨数x之间的函数关系是(  )
(A) (x>0)         (B) (x≥0)
(C)y=300x(x≥0)          (D)y=300x(x>0)
2.已知甲、乙两地相s(千米),汽车从甲地匀速行驶到达乙地,如果汽车每小时耗油量为a(升),那么从甲地到乙地汽车的总耗油量y(升)与汽车的行驶速度v(千米/时)的函数图象大致是(     )
            
3.你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识,一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)S(mm2)的反比例函数,其图象如图所示:
(1)写出y与S的函数关系式;
(2)求当面条粗1.6mm2时,面条的总长度是多少米?
回复

使用道具 举报

10#
 楼主| 发表于 2011-2-6 12:16:00 | 只看该作者
七.课后练习
一场暴雨过后,一洼地存雨水20米3,如果将雨水全部排完需t分钟,排水量为a米3/分,且排水时间为5~10分钟
(1)试写出t与a的函数关系式,并指出a的取值范围;
(2)请画出函数图象
(3)根据图象回答:当排水量为3米3/分时,排水的时间需要多长?
课后反思:
第十八章  勾股定理
18.1  勾股定理(一)
一、教学目的
1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.培养在实际生活中发现问题总结规律的意识和能力。
3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
二、重点、难点
1.重点:勾股定理的内容及证明。
2.难点:勾股定理的证明。
三、例题的意图分析
例1(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。
例2使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。进一步让学生确信勾股定理的正确性。
四、课堂引入
目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。
让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。
以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。
再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。
你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。
对于任意的直角三角形也有这个性质吗?
五、例习题分析
例1(补充)已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
求证:a2+b2=c2。
分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。
⑵拼成如图所示,其等量关系为:4S△+S小正=S大正  
4× ab+(b-a)2=c2,化简可证。
⑶发挥学生的想象能力拼出不同的图形,进行证明。
⑷ 勾股定理的证明方法,达300余种。这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。
例2已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
求证:a2+b2=c2。
分析:左右两边的正方形边长相等,则两个正方形的面积相等。
左边S=4× ab+c2
右边S=(a+b)2
左边和右边面积相等,即
4× ab+c2=(a+b)2
化简可证。
六、课堂练习
1.勾股定理的具体内容是:                                                    。
2.如图,直角△ABC的主要性质是:∠C=90°,(用几何语言表示)
⑴两锐角之间的关系:                     ;
⑵若D为斜边中点,则斜边中线              ;
⑶若∠B=30°,则∠B的对边和斜边:               ;
⑷三边之间的关系:                     。
3.△ABC的三边a、b、c,若满足b2= a2+c2,则        =90°; 若满足b2>c2+a2,则∠B是         角; 若满足b2<c2+a2,则∠B是         角。
4.根据如图所示,利用面积法证明勾股定理。
七、课后练习
1.已知在Rt△ABC中,∠B=90°,a、b、c是△ABC的三边,则
⑴c=               。(已知a、b,求c)
⑵a=               。(已知b、c,求a)
⑶b=               。(已知a、c,求b)
2.如下表,表中所给的每行的三个数a、b、c,有a<b<c,试根据表中已有数的规律,写出当a=19时,b,c的值,并把b、c用含a的代数式表示出来。

3、4、5        32+42=52
5、12、13        52+122=132
7、24、25        72+242=252
9、40、41        92+402=412
……        ……
19,b、c        192+b2=c2
3.在△ABC中,∠BAC=120°,AB=AC= cm,一动点P从B向C以每秒2cm的速度移动,问当P点移动多少秒时,PA与腰垂直。
4.已知:如图,在△ABC中,AB=AC,D在CB的延长线上。
求证:⑴AD2-AB2=BD?CD
⑵若D在CB上,结论如何,试证明你的结论。
八、参考答案
课堂练习
1.略;
2.⑴∠A+∠B=90°;⑵CD= AB;⑶AC= AB;⑷AC2+BC2=AB2。
3.∠B,钝角,锐角;
4.提示:因为S梯形ABCD = S△ABE+ S△BCE+ S△EDA,又因为S梯形ACDG= (a+b)2,
S△BCE= S△EDA=  ab,S△ABE= c2,  (a+b)2=2×  ab+ c2。
课后练习
1.⑴c= ;⑵a= ;⑶b=
2.  ;则b= ,c= ;当a=19时,b=180,c=181。
3.5秒或10秒。
4.提示:过A作AE⊥BC于E。
课后反思:





18.1  勾股定理(二)
一、教学目的
1.会用勾股定理进行简单的计算。
2.树立数形结合的思想、分类讨论思想。
二、重点、难点
1.重点:勾股定理的简单计算。
2.难点:勾股定理的灵活运用。
回复

使用道具 举报

11#
 楼主| 发表于 2011-2-6 12:16:00 | 只看该作者
三、例题的意图分析
例1(补充)使学生熟悉定理的使用,刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。让学生明确在直角三角形中,已知任意两边都可以求出第三边。并学会利用不同的条件转化为已知两边求第三边。
例2(补充)让学生注意所给条件的不确定性,知道考虑问题要全面,体会分类讨论思想。
例3(补充)勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。让学生把前面学过的知识和新知识综合运用,提高综合能力。
四、课堂引入
复习勾股定理的文字叙述;勾股定理的符号语言及变形。学习勾股定理重在应用。
五、例习题分析
例1(补充)在Rt△ABC,∠C=90°
⑴已知a=b=5,求c。
⑵已知a=1,c=2, 求b。
⑶已知c=17,b=8, 求a。
⑷已知a:b=1:2,c=5, 求a。
⑸已知b=15,∠A=30°,求a,c。
分析:刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。⑴已知两直角边,求斜边直接用勾股定理。⑵⑶已知斜边和一直角边,求另一直角边,用勾股定理的便形式。⑷⑸已知一边和两边比,求未知边。通过前三题让学生明确在直角三角形中,已知任意两边都可以求出第三边。后两题让学生明确已知一边和两边关系,也可以求出未知边,学会见比设参的数学方法,体会由角转化为边的关系的转化思想。
例2(补充)已知直角三角形的两边长分别为5和12,求第三边。
分析:已知两边中较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进形计算。让学生知道考虑问题要全面,体会分类讨论思想。
例3(补充)已知:如图,等边△ABC的边长是6cm。
⑴求等边△ABC的高。                                       
⑵求S△ABC。
分析:勾股定理的使用范围是在直角三角形中,因此注意要
创造直角三角形,作高是常用的创造直角三角形的辅助线做
法。欲求高CD,可将其置身于Rt△ADC或Rt△BDC中,
但只有一边已知,根据等腰三角形三线合一性质,可求AD=CD= AB=3cm,则此题可解。
六、课堂练习
1.填空题
⑴在Rt△ABC,∠C=90°,a=8,b=15,则c=       。
⑵在Rt△ABC,∠B=90°,a=3,b=4,则c=       。
⑶在Rt△ABC,∠C=90°,c=10,a:b=3:4,则a=       ,b=       。
⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为             。
⑸已知直角三角形的两边长分别为3cm和5cm,,则第三边长为             。
⑹已知等边三角形的边长为2cm,则它的高为        ,面积为          。
2.已知:如图,在△ABC中,∠C=60°,AB= ,AC=4,AD是BC边上的高,求BC的长。                           
3.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。
七、课后练习
1.填空题
在Rt△ABC,∠C=90°,
⑴如果a=7,c=25,则b=       。
⑵如果∠A=30°,a=4,则b=       。
⑶如果∠A=45°,a=3,则c=       。
⑷如果c=10,a-b=2,则b=       。
⑸如果a、b、c是连续整数,则a+b+c=          。
⑹如果b=8,a:c=3:5,则c=         。
2.已知:如图,四边形ABCD中,AD∥BC,AD⊥DC,      
AB⊥AC,∠B=60°,CD=1cm,求BC的长。
八、参考答案
课堂练习
1.17;   ;  6,8;  6,8,10;  4或 ;   , ;
2.8;        3.48。
课后练习
1.24;  4 ;  3 ;  6;  12;  10;      2.  
课后反思:





18.1  勾股定理(三)
一、教学目的
1.会用勾股定理解决简单的实际问题。
2.树立数形结合的思想。
二、重点、难点
1.重点:勾股定理的应用。
2.难点:实际问题向数学问题的转化。
三、例题的意图分析
例1(教材P74页探究1)明确如何将实际问题转化为数学问题,注意条件的转化;学会如何利用数学知识、思想、方法解决实际问题。
例2(教材P75页探究2)使学生进一步熟练使用勾股定理,探究直角三角形三边的关系:保证一边不变,其它两边的变化。
四、课堂引入
勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。
五、例习题分析
例1(教材P74页探究1)
分析:⑴在实际问题向数学问题的转化过程中,注意勾股定理的使用条件,即门框为长方形,四个角都是直角。⑵让学生深入探讨图中有几个直角三角形?图中标字母的线段哪条最长?⑶指出薄木板在数学问题中忽略厚度,只记长度,探讨以何种方式通过?⑷转化为勾股定理的计算,采用多种方法。⑸注意给学生小结深化数学建模思想,激发数学兴趣。
例2(教材P75页探究2)
分析:⑴在△AOB中,已知AB=3,AO=2.5,利用勾股定理计算OB。                          ⑵  在△COD中,已知CD=3,CO=2,利用勾股定理计算OD。
则BD=OD-OB,通过计算可知BD≠AC。
⑶进一步让学生探究AC和BD的关系,给AC不同的值,计算BD。
六、课堂练习
1.小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是         米。
2.如图,山坡上两株树木之间的坡面距离是4 米,则这两株树之间的垂直距离是
        米,水平距离是   
回复

使用道具 举报

12#
 楼主| 发表于 2011-2-6 12:16:00 | 只看该作者
     米。






2题图                       3题图                        4题图
3.如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是               。
4.如图,原计划从A地经C地到B地修建一条高速公路,后因技术攻关,可以打隧道由A地到B地直接修建,已知高速公路一公里造价为300万元,隧道总长为2公里,隧道造价为500万元,AC=80公里,BC=60公里,则改建后可省工程费用是多少?
七、课后练习
1.如图,欲测量松花江的宽度,沿江岸取B、C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,
∠B=60°,则江面的宽度为             。
2.有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为            米。
3.一根32厘米的绳子被折成如图所示的形状钉在P、Q两点,PQ=16厘米,且RP⊥PQ,则RQ=        厘米。
4.如图,钢索斜拉大桥为等腰三角形,支柱高24米,∠B=∠C=30°,E、F分别为BD、CD中点,试求B、C两点之间的距离,钢索AB和AE的长度。
(精确到1米)
八、参考答案:
课堂练习:
1. ;                                  2.6,  ;
3.18米;                                     4.11600;
课后练习
1. 米;                                  2. ;
3.20;                                       4.83米,48米,32米;
课后反思:




18.1  勾股定理(四)
一、教学目的
1.会用勾股定理解决较综合的问题。
2.树立数形结合的思想。
二、重点、难点
1.重点:勾股定理的综合应用。
2.难点:勾股定理的综合应用。
三、例题的意图分析
例1(补充)“双垂图”是中考重要的考点,熟练掌握“双垂图”的图形结构和图形性质,通过讨论、计算等使学生能够灵活应用。目前“双垂图”需要掌握的知识点有:3个直角三角形,三个勾股定理及推导式BC2-BD2=AC2-AD2,两对相等锐角,四对互余角,及30°或45°特殊角的特殊性质等。
例2(补充)让学生注意所求结论的开放性,根据已知条件,作适当辅助线求出三角形中的边和角。让学生掌握解一般三角形的问题常常通过作高转化为直角三角形的问题。使学生清楚作辅助线不能破坏已知角。
例3(补充)让学生掌握不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差。在转化的过程中注意条件的合理运用。让学生把前面学过的知识和新知识综合运用,提高解题的综合能力。
例4(教材P76页探究3)让学生利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。
四、课堂引入
复习勾股定理的内容。本节课探究勾股定理的综合应用。
五、例习题分析
例1(补充)1.已知:在Rt△ABC中,∠C=90°,CD⊥BC于D,∠A=60°,CD= ,
求线段AB的长。
分析:本题是“双垂图”的计算题,“双垂图”是中考重要的考点,所以要求学生对图形及性质掌握非常熟练,能够灵活应用。目前“双垂图”需要掌握的知识点有:3个直角三角形,三个勾股定理及推导式BC2-BD2=AC2-AD2,两对相等锐角,四对互余角,及30°或45°特殊角的特殊性质等。
    要求学生能够自己画图,并正确标图。引导学生分析:欲求AB,可由AB=BD+CD,分别在两个三角形中利用勾股定理和特殊角,求出BD=3和AD=1。或欲求AB,可由 ,分别在两个三角形中利用勾股定理和特殊角,求出AC=2和BC=6。
例2(补充)已知:如图,△ABC中,AC=4,∠B=45°,∠A=60°,根据题设可知什么?
分析:由于本题中的△ABC不是直角三角形,所以根据题设只能直接求得∠ACB=75°。在学生充分思考和讨论后,发现添置AB边上的高这条辅助线,就可以求得AD,CD,BD,AB,BC及S△ABC。让学生充分讨论还可以作其它辅助线吗?为什么?
小结:可见解一般三角形的问题常常通过作高转化为直角三角形的问题。并指出如何作辅助线?
解略。
例3(补充)已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。
分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。教学中要逐层展示给学生,让学生深入体会。
解:延长AD、BC交于E。
∵∠A=∠60°,∠B=90°,∴∠E=30°。
∴AE=2AB=8,CE=2CD=4,
∴BE2=AE2-AB2=82-42=48,BE= = 。       
∵DE2= CE2-CD2=42-22=12,∴DE= = 。
∴S四边形ABCD=S△ABE-S△CDE= AB?BE- CD?DE=
小结:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差。
例4(教材P76页探究3)
分析:利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。
变式训练:在数轴上画出表示 的点。
六、课堂练习
1.△ABC中,AB=AC=25cm,高AD=20cm,则BC=         ,S△ABC=        。
2.△ABC中,若∠A=2∠B=3∠C,AC= cm,则∠A=         度,∠B=         度,∠C=         度,BC=         ,S△ABC=         。
3.△ABC中,∠C=90°,AB=4,BC=
回复

使用道具 举报

13#
 楼主| 发表于 2011-2-6 12:16:00 | 只看该作者
,CD⊥AB于D,则AC=        ,CD=        ,BD=         ,AD=         ,S△ABC=         。
4.已知:如图,△ABC中,AB=26,BC=25,AC=17,
求S△ABC。
七、课后练习
1.在Rt△ABC中,∠C=90°,CD⊥BC于D,∠A=60°,CD= ,AB=       。
2.在Rt△ABC中,∠C=90°,S△ABC=30,c=13,且a<b,则a=      ,b=       。
3.已知:如图,在△ABC中,∠B=30°,∠C=45°,AC= ,
求(1)AB的长;(2)S△ABC。
4.在数轴上画出表示- 的点。
八、参考答案:
课堂练习:
1.30cm,300cm2;
2.90,60,30,4, ;
3.2, ,3,1, ;
4.作BD⊥AC于D,设AD=x,则CD=17-x,252-x2=262-(17-x)2,x=7,BD=24,
S△ABC= AC?BD=254;
课后练习:
1.4;      
2.5,12;
3.提示:作AD⊥BC于D,AD=CD=2,AB=4,BD= ,BC=2+ ,S△ABC= =2+ ;
4.略。
课后反思:




18.2  勾股定理的逆定理(一)
一、教学目的
1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。
2.探究勾股定理的逆定理的证明方法。
3.理解原命题、逆命题、逆定理的概念及关系。
二、重点、难点
1.重点:掌握勾股定理的逆定理及证明。
2.难点:勾股定理的逆定理的证明。
三、例题的意图分析
例1(补充)使学生了解命题,逆命题,逆定理的概念,及它们之间的关系。
例2(P82探究)通过让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,锻炼学生的动手操作能力,再通过探究理论证明方法,使实践上升到理论,提高学生的理性思维。
例3(补充)使学生明确运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大。②分别用代数方法计算出a2+b2和c2的值。③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形。
四、课堂引入
创设情境:⑴怎样判定一个三角形是等腰三角形?
⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想。
五、例习题分析
例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?
⑴同旁内角互补,两条直线平行。
⑵如果两个实数的平方相等,那么两个实数平方相等。
⑶线段垂直平分线上的点到线段两端点的距离相等。
⑷直角三角形中30°角所对的直角边等于斜边的一半。
分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用。
⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假。
解略。
例2(P82探究)证明:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。
分析:⑴注意命题证明的格式,首先要根据题意画出图形,然后写已知求证。
⑵如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角。
⑶利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决。
⑷先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证。
⑸先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法。充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受。
证明略。
例3(补充)已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1)
求证:∠C=90°。
分析:⑴运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大。②分别用代数方法计算出a2+b2和c2的值。③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形。
⑵要证∠C=90°,只要证△ABC是直角三角形,并且c边最大。根据勾股定理的逆定理只要证明a2+b2=c2即可。
⑶由于a2+b2= (n2-1)2+(2n)2=n4+2n2+1,c2=(n2+1)2= n4+2n2+1,从而a2+b2=c2,故命题获证。
六、课堂练习
1.判断题。
⑴在一个三角形中,如果一边上的中线等于这条边的一半,那么这条边所对的角是直角。
⑵命题:“在一个三角形中,有一个角是30°,那么它所对的边是另一边的一半。”的逆命题是真命题。
⑶勾股定理的逆定理是:如果两条直角边的平方和等于斜边的平方,那么这个三角形是直角三角形。
⑷△ABC的三边之比是1:1: ,则△ABC是直角三角形。
2.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是(    )
A.如果∠C-∠B=∠A,则△ABC是直角三角形。
B.如果c2= b2—a2,则△ABC是直角三角形,且∠C=90°。
C.如果(c+a)(c-a)=b2,则△ABC是直角三角形。
D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形。
3.下列四条线段不能组成直角三角形的是(    )
A.a=8,b=15,c=17
B.a=9,b=12,c=15
C.a= ,b= ,c=
D.a:b:c=2:3:4
4.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?
⑴a= ,b= ,c= ;          ⑵a=5,b=7,c=9;
回复

使用道具 举报

14#
 楼主| 发表于 2011-2-6 12:16:00 | 只看该作者
⑶a=2,b= ,c= ;             ⑷a=5,b= ,c=1。
七、课后练习,
1.叙述下列命题的逆命题,并判断逆命题是否正确。
⑴如果a3>0,那么a2>0;
⑵如果三角形有一个角小于90°,那么这个三角形是锐角三角形;
⑶如果两个三角形全等,那么它们的对应角相等;
⑷关于某条直线对称的两条线段一定相等。
2.填空题。
⑴任何一个命题都有        ,但任何一个定理未必都有         。
⑵“两直线平行,内错角相等。”的逆定理是          。
⑶在△ABC中,若a2=b2-c2,则△ABC是        三角形,         是直角;
若a2<b2-c2,则∠B是          。
⑷若在△ABC中,a=m2-n2,b=2mn,c= m2+n2,则△ABC是         三角形。
3.若三角形的三边是  ⑴1、 、2;  ⑵ ;  ⑶32,42,52  ⑷9,40,41;  
⑸(m+n)2-1,2(m+n),(m+n)2+1;则构成的是直角三角形的有(    )
A.2个         B.3个     C.4个      D.5个
4.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?
⑴a=9,b=41,c=40;               ⑵a=15,b=16,c=6;
⑶a=2,b= ,c=4;             ⑷a=5k,b=12k,c=13k(k>0)。
八、参考答案:
课堂练习:
1.对,错,错,对;               2.D;
3.D;                            4.⑴是,∠B;⑵不是;⑶是,∠C;⑷是,∠A。
课后练习:
1.⑴如果a2>0,那么a3>0;假命题。
⑵如果三角形是锐角三角形,那么有一个角是锐角;真命题。
⑶如果两个三角形的对应角相等,那么这两个三角形全等;假命题。
⑷两条相等的线段一定关于某条直线对称;假命题。
2.⑴逆命题,逆定理;⑵内错角相等,两直线平行;⑶直角,∠B,钝角;⑷直角。
3.B             4.⑴是,∠B;⑵不是,;⑶是,∠C;⑷是,∠C。
课后反思:





18.2  勾股定理的逆定理(二)
一、教学目的
1.灵活应用勾股定理及逆定理解决实际问题。
2.进一步加深性质定理与判定定理之间关系的认识。
二、重点、难点
1.重点:灵活应用勾股定理及逆定理解决实际问题。
2.难点:灵活应用勾股定理及逆定理解决实际问题。
三、例题的意图分析
例1(P83例2)让学生养成利用勾股定理的逆定理解决实际问题的意识。
例2(补充)培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。
四、课堂引入
创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。
五、例习题分析
例1(P83例2)
分析:⑴了解方位角,及方位名词;
⑵依题意画出图形;
⑶依题意可得PR=12×1.5=18,PQ=16×1.5=24,      QR=30;
⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理 的逆定理,知∠QPR=90°;
⑸∠PRS=∠QPR-∠QPS=45°。
小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。
例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。
分析:⑴若判断三角形的形状,先求三角形的三边长;
⑵设未知数列方程,求出三角形的三边长5、12、13;
⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形。
解略。
六、课堂练习
1.小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是               。
2.如图,在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A、B、C三点能否构成直角三角形?为什么?
3.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截。已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?
七、课后练习
1.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为             ,此三角形的形状为            。
2.一根12米的电线杆AB,用铁丝AC、AD固定,现已知用去铁丝AC=15米,AD=13米,又测得地面上B、C两点之间距离是9米,B、D两点之间距离是5米,则电线杆和地面是否垂直,为什么?
3.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°。
八、参考答案:
课堂练习:
1.向正南或正北。
2.能,因为BC2=BD2+CD2=20,AC2=AD2+CD2=5,AB2=25,所以BC2+AC2= AB2;
3.由△ABC是直角三角形,可知∠CAB+∠CBA=90°,所以有∠CAB=40°,航向为北偏东50°。
课后练习:
1.6米,8米,10米,直角三角形;
2.△ABC、△ABD是直角三角形,AB和地面垂直。
3.提示:连结AC。AC2=AB2+BC2=25,AC2+AD2=CD2,因此∠CAB=90°,
S四边形=S△ADC+S△ABC=36平方米。
课后反思:








18.2  勾股定理的逆定理(三)
一、教学目的
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2025-1-9 13:31

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表