|
9#
楼主 |
发表于 2011-2-5 11:21:00
|
只看该作者
2.难点:将方程组化成两个方程中的某一未知数的系数的绝对值相等。
教学过程
一、复习
下列方程组用加减法可消哪一个元,如何消元,消元后的一元一次方程是什么?
3x+4y=-3.4 4x-2y=5.6
6x-4y=5.2 7x-2y=7.7
二、新授
例l.解方程组 9x+2y=15 ①
3x+4y=10 ②
分析如果用加减法解,直接把两个方程的两边相减能消去一个未知数吗?如果不行,那该怎么办呢?
当两个方程中某个未知数系数的绝对值相等时,可用加减法求解,你有办法将两个方程中的某个系数变相同或相反吗?
方程②中y的系数是方程①中y系数的2倍,所以只要将①×2
例2.解方程组
3x-4y=10 ①
15x+6y=42 ②
这个方程组中两个方程的x,y系数都不是整数倍。那么如何把其中一个未知数的系数变为绝对值相等呢?该消哪一个元比较简便呢?(让学生自主探索怎样适当地把方程变形,才能转化为例3或例4那样的情形。)
分析:(1)若消y,两个方程未知数y系数的绝对值分别为4、6,要使它们变成12(4与6的最小公倍数),只要①×3,②×2(2)若消x,只要使工的系数的绝对值等于15。(3与5的最小公倍数,因此只要①×3,②×2)
请同学们用加减法解本节例2中的方程组。
2x-7y=8
3x-8y-10=0
做完后,并比较用加减法和代人法解,哪种方法方便?
教师讲评:应先整理为一般式。
三、巩固练习
教科书第33页,练习1.3。
四、小结(教师说出条件部分,学生回答结论部分)。
加减法解二元一次方程组,两方程中若有一个未知数系数的绝对值相等,可直接加减消元;若同一未知数的系数绝对值不等,则应选一个或两个方程变形,使一个未知数的系数的绝对值相等,然后再直接用加减法求解;若方程组比较复杂,应先化简整理。
五、作业
教科书第33页 练习2.4。
第五课时(习题课)
教学目的
1.使学生进一步理解二元一次方程(组)的解的概念。
2.使学生能够根据题目特点熟练地选用代入法或加减法解二元一次方程组。
教学过程
一、复习
1.什么是二元一次方程,二元一次方程组以及它的解?
2.解二元一次方程组有哪两种方法?它们的实际是什么?
3.举例说明解二元一次方程组什么情况下用代人法,什么情况下用加减法?
[当方程组中两个方程的某个未知数的系数的绝对值为l或有一个方程的常数项是。时,用代人法;当两个方程中某人未知数的系数的绝对值相等或成整数倍时,用加减法。)
二、课堂练习
1.方程2x+39=3与下面哪个方程所组成的方程组的解是
x=3
y=-1
A.41+6y=-6 B.x-2y=5
C.3x+4y=4 D.以上都不对
2.方程组 3x-7y=7的解是否满足方程2x+3y=-5
5x+2y=2
[满足,解法一,先求出方程组的解为 x= 把x,y值代入方
y=-
程2x+3y=-5的左边,左边=2× +3×(-)=-5=右边,解法二,不用求解,因为方程2x+3y=-5,是方程组中的第二个方程减去第一个方程得到的,所以方程组的解必满足方程2x+3y=-5]
3.解下列方程组应消哪个元,用哪一种方法较简便?
(1) 2x-3y=-5 ① [消x,用代入法,
3x=2y ② 由②得x=y 再代入①]
(2) 2x+3y=5 ① [消x用加减法,
4x-2y=1 ② ①×②-②]
(3) 3x+2y-2=0 ① [整体代入,消y,
-2x=- ② 由①得3x+2y=2代入②]
4.解方程组
(1) 6x+5z=25 ①
3x+2z=10 ②
(2) -=0 ①
-= ②
(3) +=3 ①
-=-1 ②
探索简便方法:
(1)可以用加减法,①-②×2,也可以用代人法,由②得 3x=l0-2x,代人①得 2×(10-2z)+5z=25
(2)原方程组先整理为 4x-y=2 ③ 除用加减法解外。注
3x-4y=-2 ④
意到这两个方程的常数项互为相反数,因此③+④得
7x-7y=0即x=y,再用代入法求解。
(3)可以与(2)一样先把原方程组整理,也可以直接加减.
5.用适当的方法解方程组
(1) + =
5x+7y=
(2) 5x-2y=50
15%x+6%y=5
(3) +1=
2x-3y=4
三、作业
教科书第39页复习题l、2、①②③。
第六课时
教学目的
1.使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用。
2.通过应用题的教学使学生进一步使用代数中的方程去反映现实世界中的等量关系,体会代数方法的优越性,体会列方程组往往比列一元一次方程容易。
3.进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力。
重点、难点、关键
1、重、难点:根据题意,列出二元一次方程组。
2、关键:正确地找出应用题中的两个等量关系,并把它们列成方程。
教学过程
一、复习
|
|