|
分数的读法和写法 总43(电37)
教学目标:掌握分数的读法和写法,进一步理解分数单位.
教学重点:掌握分数的读法和写法,理解分数单位.
教学难点:正确解决求一个数是另一个数的几分之几的问题.
教学课型:新授课
教具准备:课件
教学过程:
一,铺垫复习,准备迁移
用分数表示阴影部分:
2,操作.
(1)拿出正方形的纸用折叠的方法表示它的3/8;5/8
(2)拿出长方形的纸用折叠的方法表示它的5/8;7/8
二,探究新知,激发思维
1,教学分数的读写法.
(1)读分数.[课件1]
1/4 4/5 1/7 8/9 1/15 12/17 30/19 63/37
板述:读分数时,应先读分母,再读分子.
(2)写分数.[课件2]
三分之一 四分之三 五分之二 六分之一 六分之五
四十分之一 十八分之十三 三十分之一 四十五分之三十七
板述:写分数时,应先写分母,再划分数线,最后写分子.
※ P87 .做一做(上)
2,教学分数单位.
(1)P87 .做一做(下)1
(2)3/5,1/2,13/15,19/36的分数单位是多少 分别由几个这样的分数单位组成
(3)小结.
板书:把单位"1"平均分成若干份,表示其中一份的数,叫做分数单位.
3,教学用直线上的点来表示分数:
※ P87 .做一做(下)2
4,教学教学P88 .例1: 文化路小学五年级一班有42人,其中有5人是三好学生.三好学生占全班人数的几分之几
(1)分析:A,谁是单位1
B,分母是几 分数单位是几
C,三好学生的人数占全班人数的几分子几
(2)板书:∵ 1人占全班人数的1/42,5人就是5个1/42,5个1/42是5/42
∴ 三好学生占全班人数的5/42
P88 .做一做
三,巩固练习,强化提高
1,P89 .1
2,P89 .5
3,P89 .6
4,P89 .7
提问:问题所表示的分数意义是什么
5,P89 .8
四,课堂小结,抽象概括
提问:A,读分数时应先读什么,再读什么
B,写分数时应先写什么,再写什么,最后写什么
C,分数中的分子表示什么,分母呢
D,什么叫分数单位 想想什么样的分数的分数单位相同,什么样的分数的分数单位不同
E,有关分数的意义,你还有哪些问题没弄明白,需要大家帮助
板书设计: 分数的读法和写法
把单位"1"平均分成若干份,表示其中一份的数,叫做分数单位.
3/4的分数单位是1/4,3/4里有3个1/4
读分数时,应先读分母,再读分子.
写分数时,应先写分母,再划分数线,最后写分子.
分数与除法的关系 总44(电38)
教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生
动手操作的能力和抽象,概括,归纳的能力.
教学重点:分数的数感培养,以及与除法的联系.
教学难点:抽象思维的培养.
教学课型:新授课
教具准备:课件
教学过程:
一,铺垫复习,导入新知 [课件1]
1,提问:A,7/8是什么数 它表示什么
B,7÷8是什么运算 它又表示什么
C,你发现7/8和7÷8之间有联系吗
2,揭示课题.
述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系".
板书课题:分数与除法的关系
二,探索新知,发展智能
1,教学P90 .例2:把1米长的钢管平均截成3段,每段长多少
提问:A,试一试,你有办法解决这个问题吗
板书:用除法计算:1÷3=0.333……(米)
用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就
是1/3米.
B,这两种解法有什么联系吗
(从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)
板书: 1÷3= 1/3
C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来
表示 也就是说整数除法的商也可以用谁来表示
2,教学P90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]
(1)分析:A,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少怎么列式
B,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢
板书: 3÷4= 3/4
(2)操作检验(分组进行)
① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼
② 反馈分法.
提问:A,请介绍一下你们是怎么分的
(第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)
(第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)
B,比较这两种分法,哪种简便些
※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.
3,小结提问:A,观察上面的学习,你获得了哪些知识
板书: 被除数 ÷ 除数 = 除数 / 被除数
B,你能举几个用分数表示整数除法的商的例子吗
C,能不能用一个含有字母算式来表示所有的例子
板书: a÷b=b/a (b≠0)
D,b为什么不能等于0
4, 看书P91 深化.
反馈:说一说分数和除法之间和什么联系 又有什么区别
板书:分数是一个数,除法是一种运算.
三,巩固练习 [课件5]
1,用分数表示下面各式的商.
5÷8 24÷25 16÷49 7÷13 9÷9 c÷d
2,口算.
7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )
3, 7/10表示把单位"1"平均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.
四,全课小结
当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.
在整数除法中零不能作除数,那么,分数的分母也不能是零.
五,家作
P93 .1,2,3
板书设计: 分数与除法的关系
例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4
被除数 ÷ 除数 = 除数 / 被除数
a÷b=b/a (b≠0) |
|