|
6#
楼主 |
发表于 2010-8-14 07:46:00
|
只看该作者
第十二讲 行程问题(一)
例1.甲、乙两人分别从A、B两地同时出发,相向而行。如果两人都按原定速度行进,那么4小时相遇;现在两人都比原计划每小时少走1千米,那么5小时相遇。A、B两地相距多少千米?
分析:可以想象,如果甲、乙两人以现在的速度(比原计划每小时少走1千米)仍然走4小时,那么他们不能相遇,而是相隔一段路。这段路的长度是多少呢?就是两人4小时一共比原来少行的路。由于以现在的速度行走,他们5小时相遇,换句话说,再行1小时,他们恰好共同行完这段相隔的路。这样,就能求出他们现在的速度和了。
解:1×4×2÷(5-4)×5=40(千米)
这道题属于相遇问题,它的基本关系式是:速度和×时间=(相隔的)路程。但只有符合“同时出发,相向而行,经过相同时间相遇”这样的特点才能运用上面的关系式。不过,当出现“不同时出发”或“没有相遇(而是还相隔一段路)”的情况时,应该通过转化条件,然后应用上面的关系式。
练习与作业
1. 一列火车平均每小时行用千米,这列火车从甲地到乙地共用了4小时,问:甲、乙两地相距多少千米?
2. 一辆汽车5小时行了280千米,这辆汽车平均每小时行多少千米?
3. 小明家到学校1800米,小明早晨上学,平均每分钟走120米,问:小明从家到学校一共用多少分钟?
4. 甲、乙两人同时从东西两村出发相向而行,甲每分钟走85米,乙每分钟走90米,18分钟后两人相遇。东西两村相距多少米?
5. 甲、乙两列火车同时从两地相向而行,甲车每小时行55千米,乙车每小时行60千米,4小时后两车相遇。两地相距多少千米?
第十三讲 行程问题(二)
例2.小王、小张步行的速度分别是每小时4.8千米和 5.4千米。小李骑车的速度为每小时10.8千米。小王、小张从甲地到乙地,小李从乙地到甲地,他们三人同时出发,在小张与小李相遇5分钟后,小王又与小李相遇。小李骑车从乙地到甲地需多长时间?
分析:为便于分析,画出线段图36-1:
图中C点表示小张与小李相遇地点,D点表示他们相遇时小王所在地点。根据题意,小王从D点、小李从C点同时出发,相向而行,经过5分钟相遇。因此,DC的长为
这段长度也是相同时间内,小张比小王多行的路程。这里的“相同时间”指从三人同时出发到小张与小李相遇所经过的时间。这段时间为
1.3÷(5.4-4.8)×60=130(分)
这就是说,小张行完AC这段路(也就是小李行完CB这段路)用了130分钟,而小李的速度是小张速度的2(=10.8÷5.4)倍,所以小李行完AC这段路只需小张的一半时间(65分)。
练习与作业
1. 东西两地相距500千米,甲、乙两车同时从两地相向出发,甲车每小时行45千米,乙车每小时行55千米。甲、乙两车几小时后才能相遇?
2. 甲站到乙站相距1100千米,两列火车同时从两地相向开出,10小时相遇,快车每小时行用千米,慢车每小时行多少千米?
3. 甲、乙两人同时从相距54千米的两地相向而行,甲的速度是每小时5千米,乙的速度是每小时4千米,几个时后两人相遇?
4. 甲、乙两工程队合修一条长935米的公路,甲队以每天45米的速度由西端往东修,乙队以每天40米的速度由东端往西修,6天后两队相距多远?此工程共需多少天?
第十四讲 填补不完整的算式
数字谜是一类非常有趣的数学问题,在小学数学竞赛中经常出现.解这类问题必须认真审题,根据题目的特点,找出突破口,从而逐步简化题目直至问题完全解决.
问题16.1 在下面这个算式中,不同的文字代表不同的数字,相同的文字代表相同的数字.它们各代表什么数字时,算式才能成立?
分析(1)从“明”字入手.算式中“明+明=明”是本题的突破口.因为在0~9这十个数字中,只有0+0=0,所以:明=0.即
(2)因为两个最大的一位数相加是18,只能向高位进1.因此:分=1.即
(3)再由“是+是=10”可知:是=5.即
(4)由“1+就=5”可知:就=4.即
(5)由“非+非= 4”可知:非= 2.即
练习与作业 |
|