|
沙发
楼主 |
发表于 2010-4-3 16:20:00
|
只看该作者
本单元先教学积的变化规律: 一个因数不变,另一个因数乘一个数,得到的积等于原来的积乘同一个数。再教学商不变的规律: 被除数和除数同时乘或除以同一个数(0除外),商不变。显然积的变化规律研究范围比较窄(只研究因数乘几的情况,不研究因数除以几的情况),商不变的规律研究范围比较宽(既研究被除数和除数乘同一个数,也研究除以同一个数)。这样布置有两个原因: 一是在积的变化规律的教学中,同学不只要理解规律的内容,还要学习探索规律的方法,并运用这些学习活动经验继续研究商不变的规律。把积的变化规律的研究范围缩小一些,有利于实现教学目的。二是应用这两条规律学习小数和分数知识,积的变化规律一般只需要因数乘几这种情况,商不变的规律则需要被除数、除数乘或除以同一个数两种情况。
这些变化规律在前面的教学里有过渗透,现在作为一个数学问题进行研究,寻找其中的规律并应用于计算和解决实际问题。由于研究的是关于运算的规律,势必涉和较大数的计算,为了不把大量教学资源消耗在计算上,所以用计算器作为工具。
1? 提供研究的内容和任务,提示研究的方法和步骤,让同学通过计算在若干个实例中归纳运算规律。
积的变化规律是什么?商不变的规律又指什么?都要同学经过探索自身得出。教材编写充沛体现新课程的思想: 教材是同学从事数学学习的基本素材,为同学的数学学习活动提供基本线索、基本内容和主要的数学活动机会。对同学而言,教材是从事数学学习活动的“动身点”,而不是“终极目标”。
(1) 第83页例题只研究一个因数不变,另一个因数乘一个数,积的变化情况。研究活动先在教材提供的36×30=1080这个实例上进行,并把因数和积的变化记录在表格里。然后由同学自身找一些例子,进行类似的实验。通过不完全归纳,得出积的变化规律。
“想想做做”让同学继续体会积的变化规律并初步应用。第1题有两条解题思路: 一条是先算出变化了的那个因数是多少,再求积;另一条是根据一个因数乘了几,把原来的积20也乘几。两种方法得到相同的结果,能再次体会积的变化规律是客观存在的普遍规律。第3题让同学在购买计算器的实际问题中,联系生活经验和数量关系,通过变化购买的数量,计算相应的总价,感受积的变化规律的合理性。
(2) 第84页例题教学商不变的规律,把被除数和除数同时乘一个数与同时除以一个数放在一道例题里教学,这是考虑到同学有探索积的变化规律的经验,继续探索商不变的规律时可以增加问题的容量,提高学习的效率。例题选择8400÷40=210这个算式为研究载体,是因为它的被除数和除数同时乘几、同时除以几可选的数比较多,有利于同学获得丰富的感性资料,加强对商不变的体验。
例题的被除数和除数同时乘或除以的那一个数,要让同学自主选择。这样,可以交流和出现商不变的多种实例。
被除数和除数同时乘或除以的那个数不能是0,这是因为除数不能是0。在8400÷40这个除式中,被除数和除数都除以0,显然是不可以的。被除数和除数都乘0,除数就变成为0,也是不可以的。所以,例题和其结论中都指出“0除外”。教学时要让同学注意到这一点。但不要花费过多时间,更不要用这方面的试题去考同学。
(3) 商不变的规律可以应用于除法计算。有些除法有余数,假如被除数和除数同时乘或除以一个数,虽然商不变,但余数变了。第85页例题就教学这些内容。
教学被除数、除数末尾都有0,且没有余数的除法计算,让同学看着竖式,联系商不变的规律考虑“被除数的末尾为什么只划去一个0”。理解这个问题要分三步: 先是为什么被除数和除数末尾都划去0,然后是为什么被除数末尾只划去一个0,最后是这样做有什么好处。从而掌握运用商不变的规律使竖式计算简便的方法要领。
教学被除数、除数末尾都有0,且有余数的除法计算,重点在被除数和除数都除以10,商虽然不变,但余数变了。这也是教学的难点。教材把这个数学知识置于900元钱买单价40元的篮球的实际问题里教学,有利于化解难点。通过还剩20元这个实际答案,理解余数是20而不是2。另外,不应用商不变规律直接计算得到的余数是20;商22乘除数4,只有加20才干得到900等都能协助同学理解新知识。
|
|