|
板凳
楼主 |
发表于 2009-6-15 07:04:00
|
只看该作者
三、为了发现规律
案例三:三角形内角和学生算出三角尺上三个角和是180°后、
师:是不是所有的三角形的内角和都是180°?
生1:是。
生2:不一定。
师:看来我们要未验证一下,拿出准备好的锐角三角形、直角三角形、钝角三角形,分别沿着上面的虚线折一折,看看你们能发现什么?
生沿虚线折,班内交流操作后的发现。
生3:锐角三角形三个角拼成一个平角,说明三个角和是180。:
生4:直角三角形三个角和是180°。
生5:钝角三角形三个角和是180°。
师:通过操作我们发现所有三角形内角和是180°。
在探索活动中,操作是学生的一种意义建构,是他们为了发现规律,探究问题而想到一种策略。在小学的数学学习中安排有很多的规律探索,这些规律需要通过操作来认识、来发现,但在这些操作中学生应是主动的“拓荒者”,而非被动的“操作工”。就像案例三中,让学生沿着三角形上的虚线折一折,看看能发现什么.至于为什么需要这样折,学生显然不得而知,只是被动地执行老y币命令,这样操作是在预定框架内“涂鸦”,有其名而无其实。
操作是为了发现规律,但它需要的不是压缩过程后裸露式的直白,也不是不分原由的盲目劳动,而是需要从知其然到知其所以然的主动跋涉,需要经历追 寻阳光时的风雨洗礼,而只有经历这样的操作,得来的规律才是充盈丰满的,才是有生命气息的。就像案例三中,既然学生知道要通过实验来验证,完全可以让他们自己想办法去如何实验,在这时学生可能都是采用量角器测量,通过交流他们又会发现量角器测量会出现误差,在分析误差形成原因以减少误差的基础上,学生们就会想到把三个角放在一起量,而在把三个角放在一起时,他们就会发现不要量了,三个角拼成了一个平角。这样让学生去操作,真正顺应学生的思维现实,使学生在实践中不断地发现问题,探索出规律,不仅充分发挥了操作的价值,也让学生经历了一次有意义的探索之旅。
|
|