|
5#
楼主 |
发表于 2012-12-22 00:09:04
|
只看该作者
7.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.
答案为85714
解:设原六位数为abcde2,则新六位数为2abcde(字母上无法加横线,请将整个看成一个六位数)
再设abcde(五位数)为x,则原六位数就是10x+2,新六位数就是200000+x
根据题意得,(200000+x)×3=10x+2
解得x=85714
所以原数就是857142
答:原数为857142
8.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.
答案为3963
解:设原四位数为abcd,则新数为cdab,且d+b=12,a+c=9
根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于观察
abcd
2376
cdab
根据d+b=12,可知d、b可能是3、9;4、8;5、7;6、6。
再观察竖式中的个位,便可以知道只有当d=3,b=9;或d=8,b=4时成立。
先取d=3,b=9代入竖式的百位,可以确定十位上有进位。
根据a+c=9,可知a、c可能是1、8;2、7;3、6;4、5。
再观察竖式中的十位,便可知只有当c=6,a=3时成立。
再代入竖式的千位,成立。
得到:abcd=3963
再取d=8,b=4代入竖式的十位,无法找到竖式的十位合适的数,所以不成立。
9.有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数.
解:设这个两位数为ab
10a+b=9b+6
10a+b=5(a+b)+3
化简得到一样:5a+4b=3
由于a、b均为一位整数
得到a=3或7,b=3或8
原数为33或78均可以
10.如果现在是上午的10点21分,那么在经过28799...99(一共有20个9)分钟之后的时间将是几点几分?
答案是10:20
解:
(28799……9(20个9)+1)/60/24整除,表示正好过了整数天,时间仍然还是10:21,因为事先计算时加了1分钟,所以现在时间是10:20
四.排列组合问题
1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有( )
A 768种 B 32种 C 24种 D 2的10次方中
解:
根据乘法原理,分两步:
第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。
第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种
综合两步,就有24×32=768种。
2 若把英语单词hello的字母写错了,则可能出现的错误共有 ( )
A 119种 B 36种 C 59种 D 48种
解:
5全排列5*4*3*2*1=120
有两个l所以120/2=60
原来有一种正确的所以60-1=59 |
|