|
板凳
楼主 |
发表于 2008-11-3 07:00:00
|
只看该作者
教学定位:
在教学中,可以变隐性为显性、分散为集中,结合以前所学的内容,通过挖掘、提炼、明确化等方式,同时通过新内容的学习,使学生感受和体验如何学会数学思考方式,体会推理和证明在数学学习和日常生活中的意义和作用,提高数学素养。
(3)选修课4中专题的教学
案例──矩阵与变换
增加的理由:
矩阵作为一种表示,在数学上是一个高度有用的工具,有了运算,矩阵作为一种线性变换,由于线性变换的重要性和它的应用的广泛性,使得矩阵在许多学科中有着广泛的应用。该专题通过几何图形的变换介绍矩阵的基本知识和基本思想,对于高中学生的数学学习就显得更有意义了。
教学定位:
对这个专题,特别强调要从具体实例入手,充分利用几何图形的直观(尽管矩阵表示的变换不仅是几何图形的变换),结合几何图形的变换来介绍有关内容,理解矩阵作为线性变换表示的实质,尽量不引入抽象的形式运算符号,不强调系统性。
2.如何把握有关内容在要求和处理上的变化
案例1
函数──强调对函数概念本质的理解,函数是描述现实世界中变量之间依赖关系的重要数学模型,避免在求函数定义域、值域及讨论函数性质时出现过于繁琐的技巧训练,避免人为地编制一些求定义域和值域的偏题;注重了与方程的联系及函数观点在二分法中的应用;加强了函数作为重要数学模型的应用;充分注意到学生对于函数概念真正的认识和理解是不容易的,要经历一个多次接触、螺旋上升的较长过程。减弱了对反函数、对数函数的要求。
案例2
统计──对于统计的教与学,必须强调统计基本思想和方法的认识和理解,而不能把统计作为计算统计量的学习。
让学生比较系统地参与收集数据、整理、分析数据、从数据中提取信息、进行估计、作出推断的全过程,并让学生在经历解决问题的活动过程中,感受和体验统计用样本来估计总体,即从局部来推断整体的归纳思想,学会收集数据的一些基本方法,体会统计思维与确定性思维的差异。
3.借助几何直观,揭示基本概念和基础知识的本质和关系,同时学会数学学习和思考的一种基本方法
几何直观形象、直观,能启迪思路、帮助理解,因此,借助几何直观学习和理解数学,是数学学习中的重要方法和途径。从某种意义上来说,只有做到了直观上的理解,才是真正的理解。
案例1 函数的性质
案例2 导数的概念
案例3 圆锥曲线
4.鼓励学生积极参与教学活动,帮助学生用内心的体验与创造来学习数学,更好地认识和理解数学
为了鼓励学生积极参与教学活动,帮助学生用内心的体验与创造来学习数学,认识和理解基本概念、掌握基础知识。在备课时不仅要备知识,把自己知道的最多、最好、最生动的东西给学生,还要考虑如何引导学生参与,应该给学生一些什么,不给什么;先给什么,后给什么;以什么样的形式能给他带来最大的思考空间;怎样创设问题情境?怎么提问?在什么时候、提什么样的问题才会有助于学生认识和理解基本概念、掌握基础知识,等等。
案例1 集合、集合的基本关系、集合的运算;
案例2 直线与方程、圆与方程;
案例3 圆锥曲线的概念;
在课堂教学中鼓励学生参与遇到种种困难时的对策:
备课时首先要加强对教学内容和教学课时整体上的把握和安排,对核心的概念和内容在时间上留有余地,对每一次所讲内容在数学上的要求有一个清楚的认识,对学生的基础和认知水平有一个比较准确的估计。其次,在观念上也要有转变,因为当我们把学生学习的积极情感调动起来、学生的思维被激活时,学生会积极参与到教学活动中来,也就会提高教与学的效率。同时,我们需要在实施过程中不断探索和积累经验。
5.注重联系,提高对数学和数学教育价值的整体认识,发展学生的应用意识和实践能力
注重联系是数学学习的要求。新课程模块的结构和对数学应用的要求更应关注数学不同内容、不同分支之间的联系,数学与日常生活的联系,以及数学与其它科学的联系。
案例1 要把握好函数与其他内容之间的联系,通过内容之间的种种联系,通过与社会生活的联系,理解函数的概念及其应用,体会为什么函数是高中数学的核心概念。为此,不仅在学习函数时,要结合函数的图象了解函数的零点与方程根的联系,根据具体函数的图象,借助计算器或计算机求相应方程的近似解;还可在平面解析几何的学习中通过类比、联想,体会直线的斜截式与一次函数的联系;在数列的学习中体会等差数列与一次函数的联系,等比数列与指数函数的联系;在导数的学习中通过与前面函数性质学习的比较,体会导数在研究函数性质时的一般性和有效性;通过具体实例,使学生感受并理解社会生活中所说的直线上升、指数爆炸、对数增长等不同的变化规律,说的就是一次函数、指数函数、对数函数等不同函数模型的增长含义;等等。
案例2 在学习向量时或在学习向量后,要有意识地将向量与三角恒等变形、与几何、与代数之间的相应内容进行有机的联系,并通过比较,感受和体验向量在处理三角、几何、代数等各不同数学分支问题中的独到之处和桥梁作用,认识数学的整体性。
|
|