|
《加法结合律》教学反思
宗家洼小学 孟庆荣
运算定律是运算体系中有普遍意义的规律,是运算的基本性质。学生在前面的学习中,已经接触到了反映加法运算定律的大量例子,特别是对于加法的可交换性、可结合性,这些经验构成了学习本节课知识的认知基础。
对于小学生来说,运算定律的运用为培养和发展学生思维的灵活性提供了极好的机会,本节课我依据“引导学生在经历知识的形成过程中,提升学生的思维能力”这一课题,设计并实施教学,纵观本节课,我认为有以下几个特点:
1.在复习引入中,巩固学生的思维基础。
由于四年级学生的认知和思维水平较低,抽象思维比较弱,对于他们来说,规律的理解,历来都是教学的难点,教学伊始,通过提问“什么是加法交换律?怎样用字母表示”唤起学生已有的知识经验,为学习新知打下良好的思维基础。
2.自主探究中,遵循认知规律,训练学生思维发展。
本节课我引导学生进行探究,自主去推论。基于我班同学思维基础,教学时,我遵循由个别到一般,由具体到抽象的认知过程。通过观察算式88+104+96的两种算法,引导学生初步发现三个数相加,先把前两个数相加或者先把后两个数相加,和不变的特点。接着通过对几组等式的观察,进一步验证这一定律。培养了学生抽象概括能力。通过观察——推理——验证——总结这一思维训练过程,使学生在经历知识的形成过程中,思维得到了有效训练与发展。在学生发现理解了加法结合律后,又通过让学生用自己喜欢的方式表示加法结合律,培养了学生的符号感。
3.多层次的巩固练习,有效提升了学生的思维。
习题设计则能有效促进学生的思维发展。本节课的练习题,由基本习题、根据运算定律填空使学生在运用运算定律的过程中,对定律有了更进一步的理解;通过辨析题“判断哪些等式用上了加法结合律”培养了学生思维的灵活性,明确了“加法结合律”的特点。
不足:对大多数学生语言表达的培养还需要加强。
|
|