|
沪粤版九年级下册物理《奥斯特的发现》教案教学反思
16.2 奥斯特的发现
教学目标
知识目标
1.认识电流的磁效应。
2.知道通电导体周围存在着磁场;通电螺线管的磁场与条形磁体相似。
3.理解通电螺线管的极性跟电流方向有关,并会用右手螺旋定则来判定。
教学重点
1.奥斯特的实验揭示了电流的磁效应。
2.通电螺线管的磁场及其应用。
教学难点:通电螺线管的磁场及其应用。
器材准备
奥斯特实验器材一套,通电螺线管,小磁针,投影仪,大头针。
教学过程
一、引入新课
当把小磁针放在条形磁体的周围时,观察到什么现象?其原因是什么?观察到小磁针发生偏转,因为磁体周围存在着磁场,小磁针受到磁场的磁力作用而发生偏转。这些是我们已经了解过的知识,大家还想知道关于磁的一些什么样的知识?
本节课我们就一起探索有关磁的其他知识。
二、新课教学
探究点一:电流的磁场
教师先让学生阅读课本p9中的第一自然段,让学生初步的了解电流的磁效应及它的发现者。接着带领学生看活动一中的内容。
在小磁针上面有一条直导线,当直导线触接电池通电时,你们能看到什么现象?改变电流的方向,又能看到什么现象?
现象:当直导线触接电池通电时,小磁针发生偏转。断电时,小磁针又回到原来的位置。当改变直导线中电流方向时,小磁针偏转方向也发生变化。
结论:看来通电导线和磁体一样,周围存在着磁场。通电导线周围磁场方向跟电流方向有关。当电流方向发生变化时,磁场的方向也发生变化。
以上实验是丹麦的科学家奥斯特首先发现的,此实验又叫奥斯特实验。这个实验表明,除了磁体周围存在着磁场外,电流的周围也存在着磁场,而且,磁场的方向跟电流的方向有关,这种现象叫作电流的磁效应。
这个实验看上去非常简单,但在当时这一重大发现轰动了科学界。因为它揭示了电现象和磁现象不是各自孤立的,而是紧密联系的,从而说明表面上互不相关的自然现象之间是相互联系的,这一发现有力地推动了电磁学的研究和发展。奥斯特实验用的是一根直导线,后来科学家们又把导线弯成各种形状,通电后研究电流的磁场。
探究点二:通电螺线管的磁场
把导线绕在圆筒上,做成的螺线管也叫线圈,它能使各导线产生的磁场叠加在一起,磁场就会强得多,这样在生产实际中用途就大,那么通电螺线管的磁场是什么样的?
我们下面通过实验来探究通电螺线管的磁场是什么样,我们每组还是先提问题,再设计实验,通过对实验的观察、分析、讨论,最后得出结论。我们已了解了条形磁体、蹄形磁体周围的磁场分布,那么通电螺线管的磁场可能与哪种磁体的相似?通电螺线管的极性与电流方向之间有什么关系?如何判断?
学生们根据问题设计实验,并动手做实验。现在把你们记录下小磁针指的方向在图中标出.还有是把你们的玻璃板,观察铁屑的分布情况,得到什么结论?
学生汇报自己的实验现象及结论。
现象:把小磁针放在螺线管周围,通电,小磁针偏转。改变电流方向,小磁针偏转方向发生变化。把一些小磁针放在通电螺线管周围,记录下小磁针北极指的方向,每个小磁针北极指的方向就是该点的磁场方向,描出磁感线。磁体周围的磁感线都是从磁体的北极出来,回到磁体南极,这样就判断出通电螺线管的两极。把小磁针放在螺线管的两端通电后,观察小磁针的N极指向,从而判别通电螺线管的N、S极。
结论:通电螺线管外部的磁场与条形磁体的磁场相似。通电螺线管两端的极性跟螺线管中电流的方向有关。当电流的方向变化时,通电螺线管的极性也发生改变。
我们知道通电螺线管两端的极性跟螺线管中的电流方向有关,有什么样的关系?我们能否用右手来判断呢?教师引出右手螺旋定则。
通电螺旋管的极性跟电流方向间的关系,可以用右手螺旋定则来判定。用右手握住螺线管,让四指弯曲且跟螺线管中电流的方向一致,则大拇指所指的那端就是螺线管的N极。如下图所示。
板书设计
16.2 奥斯特的发现
一、电流的磁场
1.电磁感应现象是奥斯特发现的。
2.通电导体跟磁体一样存在着磁场。
二、通电螺线管的磁场
1.通电螺线管外部的磁场与条形磁体的磁场相似。
2.通电螺线管两端的极性跟螺线管中电流的方向有关。当电流的方向变化时,通电螺线管的极性也发生改变。
三、右手螺旋定则
用右手握住螺线管,让四指弯曲且跟螺线管中电流的方向一致,则大拇指所指的那端就是螺线管的N极。
|
|