|
华师版八年级数学下册分式的加减教学案导学案
【学习目标】
1.让学生理解并掌握分式的加减法法则,并会运用法则进行分式的加减运算.
2.使学生在掌握分式的加减法法则的基础上,用法则进行分式的混合运算.
【学习重点】
同分母、异分母分式的加减运算以及混合运算.
【学习难点】
异分母分式的加减运算与混合运算.
行为提示:创设问题情景导入,激发学生的求知欲望.
行为提示:让学生阅读教材,尝试完成“自学互研”的所有内容,并适时给学生提供帮助,大部分学生完成后,进行小组交流.
知识链接:
1.同分母分式加减法则:ab±cb=a±cb.
2.异分母分式加减法则:ab±cd=adbd±bcbd=ad±bcbd.
解题思路:
1.如果分母字母的顺序不一样时,应调整顺序,注意“-”号的处理.
2.如果所得结果不是最简分式,应通过约分进行化简.情景导入 生成问题
【旧知回顾】
1.分式的乘除运算法则是什么?分式的乘方法则呢?(请分别用式子表示)
解:ab•cd=acbd,ab÷cd=ab•dc=adbc,(ab)n=anbn(n为正整数,且n≥2).
2.(1)甲工程队完成一项工程需n天,乙工程队要比甲多用3天才能完成这项工程,两队共同工作一天完成这项工程的几分之几?(只列算式)
(2)某厂2014、2015、2016三年的生产总值分别为a,b,c(单位:万元且a<b<c),则2016年的生产总值的增长率比2015年的生产总值的增长率提高了多少?(只列算式)
解:(1)1n+1n+3;(2)c-bb-b-aa.
自学互研 生成能力
知识模块一 分式的加减运算
【自主探究】
1.同分母的分式相加减:分母不变,分子相加减.
2.异分母的分式相加减:先通分,变为同分母的分式,然后再加减.
3.试一试:计算:(1)ba+2a;(2)2a2-3ab.
解:(1)原式=b+2a;
(2)原式=2ba2b-3aa2b=2b-3aa2b.
【合作探究】
范例1:计算:
(1)5x+3yx2-y2-x-yx2-y2;
(2)ba2-b2-ab2-a2.
解:(1)原式=5x+3y-(x-y)x2-y2=4(x+y)(x+y)(x-y)=4x-y;
(2)原式=ba2-b2+aa2-b2=a+b(a+b)(a-b)=1a-b.
范例2:计算:
(1)12p+3q+12p-3q;
(2)12m2-9-2m-3.
方法指导:当分子运算中的多项式遇到“-”号时,多项式应带括号.
学习笔记:
1.分式的加减乘除及混合运算顺序与有理数的运算顺序一样.
2.分子、分母的“-”号提到分式本身的前边,特别注意:当分子运算中的多项式遇到“-”号时,多项式应带括号.
3.分式运算的结果一定要化为最简分式.
行为提示:教师结合各组反馈的疑难问题分配任务,各组展示过程中,教师引导其他组进行补充、纠错、释疑,然后进行总结评比.
学习笔记:检测的目的在于让学生熟练掌握分式的运算,同时注重培养化简求值时“整体代入”的方法. 解:(1)原式=2p-3q(2p+3q)(2p-3q)+2p+3q(2p+3q)(2p-3q)
=4p4p2-9q2;
(2)原式=12(m+3)(m-3)-2(m+3)(m+3)(m-3)
=12-2(m+3)(m+3)(m-3)
=12-2m-6(m+3)(m-3)
=-2(m-3)(m+3)(m-3)=-2m+3.
知识模块二 分式的混合运算
【自主探究】
分式的混合运算:要注意运算顺序,式与数有相同的混合运算顺序,先乘方,再乘除,然后加减,最后得出结果,分子、分母要进行约分,注意运算的结果要是最简分式.
【合作探究】
范例3:计算:x+2x2-2x-x-1x2-4x+4÷x-4x.
分析:先算括号里面的减法,再把除法转变为乘法.
解:原式=x+2x(x-2)-x-1(x-2)2•xx-4
=(x+2)(x-2)-x(x-1)x(x-2)2•xx-4
=x2-4-x2+x(x-2)2(x-4)=1(x-2)2
=1x2-4x+4.
交流展示 生成新知
1.将阅读教材时“生成的新问题”和通过“自主探究、合作探究”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
知识模块一 分式的加减运算
知识模块二 分式的混合运算
检测反馈 达成目标
【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.
课后反思 查漏补缺
|
|