|
双五百返岗材料之《二次函数》教学反思
美良中学 邝道约
这节课是在学完正、反比例、一次函数,认识了一元二次方程之后的二次函数的第一节课,从课本的体系来看,这节课明显是要让学生明白什么是二次函数,能区别二次函数与其他函数的不同,能深刻理解二次函数的一般形式,并能初步理解实际问题中对定义域的限制。但是如果光从这些知识点上来讲这节课,其实很简单,学生在原有知识的储备基础上很容易迁移和接受这些知识,那么这节课还有什么好设计的呢?重新思索教材的编写意图,发现课本这部分内容大部分篇幅是在讲三个实际问题,由此引出了二次函数,我才意识其实这节课的重点实际上应该放在“经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验,从而形成定义”上,有了这个认识,一切变得简单了!整节课的流程可以这样概括:学生感兴趣的简单实际问题——引出学过的一次函数——复习学过的所有函数形式——设问:有没有新的函数形式呢?——探索新的问题——形成关系式——是函数吗?——是学过的函数吗?——探索出新的函数形式——概括新函数形式的特点——将特点公式化——形成二次函数定义——有练习巩固定义特点——返回实际问题讨论实际问题对自变量的限制——提出新的问题,深入讨论——课堂的小结,这样设计一气呵成,感觉上无拖沓生硬之处,最关键的是我认为这符合学生的基本认知规律,是容易让学生理解和接受的。对于实际问题的选择,我将4个问题整和于同一个实际背景下,这样设计既能引起学生兴趣,也尽量减少学生审题的时间,显得非常有层次性,这些实际问题贯穿整个课堂的始终,使整个课堂有浑然天成的感觉。对于练习的设计,仍然采取了不重复的原则性,尽量做到每题针对一个问题,并进行及时的小结,也遵循了从开放到封闭的原则,达到了良好的效果。对于最后讨论题的设计和提出,是我在进行了整个一章的单元备课后发现,我们其实对二次函数的最值问题是不讲的,但是不讲并不代表一点都不会涉及到,其中用到的思想方法还是相当重要的,在图象的观察中也具有了重要的地位,再加上这个问题在进行了前面的实际问题的解答之后是呼之欲出的:多种树——想提高产量——多种几棵好呢?,所以我设计了这个探索性的问题:假如你是果园的主人,你准备多种几棵?注意这里我并没有提出最大最小值的问题,但是所有的学生都能理解到,这是数学的魅力。这个问题的提出是整节课的一个高潮和精华,是学生学完二次函数定义之后,综合利用函数的基本知识,代数式的知识和一元二次方程的知识进行的思考,因而他们的想法和说法,不论对错,不论全面还是有所偏颇,其中都涉及到了重要的数学思想方法,而这些恰恰是非常重要的。事实证明学生的思维真的是非常活跃的,你要你给了足够的空间,他们总能从各方各面进行思考和解释,我也从中看到了他们智慧的火花,这是很令人欣慰的
|
|