⊙巩固应用 1.完成教材9页2题。 (说一说运算顺序,然后进行脱式计算) 2.完成教材9页1题。 (请学生独立阅读题目,理解题意,独立思考,解决问题,最后交流订正) 设计意图:通过这一环节,使学生及时巩固带小括号的混合运算的计算方法,增强学生的应用意识。 ⊙课堂总结 这节课我们认识了计算中的一位新朋友——小括号,当我们需要改变运算顺序时,别忘了请它来帮忙。当我们在一个算式里看到小括号时,一定要先算小括号里面的。
⊙布置作业 教材10页5题,11页2题。 板书设计 过河(一) 同学们都坐大船,需要几条船? (29+25)÷9 =54÷9 =6(条) 答:需要6条船。
如果54人都坐小船,需要多少条船? 54÷(9-3) =54÷6 =9(条) 答:需要9条船。 注意:在一个算式里,如果有小括号,要先算小括号里面的,再算小括号外面的。 第2课时 过河(二) ⊙复习巩固,导入新课 1.课件出示复习题。 说一说运算顺序,并计算。 4×(32-27) (56+25)÷9 64÷(15-7)
指名说说运算顺序,然后请学生在练习本上独立计算。 2.导入新课。 师:今天我们将利用带小括号的混合运算解决问题。(板书课题) ⊙自主探究,解决问题 1.出示题目,收集并理解数学信息。 课件出示教材9页“试一试”情境图。 师:从图中你能获取哪些数学信息?“限乘”是什么意思? (学生汇报后明确:大车最多能坐46位乘客,小车最多能坐8位乘客;“限乘”是指最多可以坐的人数,不能超过这个人数)
2.出示问题:一共70人,先坐满大车,剩下的坐小车,至少需要多少辆小车? 师:请大家仔细阅读题目,想一想先算什么,再算什么,并在练习本上解答出来。 (学生独立思考并尝试解决问题) 设计意图:在适当的时候给学生提供自主探究的机会,既能检验学生对所学知识的掌握程度,又能满足学生的好胜心,激发学生的学习兴趣。 3.组织学生汇报交流。 (1)请学生汇报展示自己解决问题的方法。 方法一:分步计算。 70-46=24(人) 24÷8=3(辆) 方法二:列综合算式。 (70-46)÷8
=24÷8 =3(辆) (2)理解每一种算法。 师(出示分步计算):有哪些同学是用这种方法解决问题的?谁能说一说你是怎样想的?(学生汇报) 师(出示综合算式):哪些同学是用这种方法解决问题的?谁能说说这个算式的意思?这个算式的运算顺序是怎样的? 预设 生1:这个算式中的70-46表示坐满大车后剩下的坐小车的人数,再看剩下的坐小车的人数里面有几个8,就需要几辆小车。
生2:这个算式中有小括号,要先算小括号里面的,再算小括号外面的。 4.解决问题:看一看,说一说,用(70-46)÷8还能解决什么问题? (1)提问:在算式(70-46)÷8中,为什么要加上小括号? 预设 生:因为根据题意,应该先算减法,再算除法。 (2)提问:还有哪些实际问题可以用这个算式来解决? 师:请同学们联系生活实际,为这个算式换一个具体的情境,注意也要先算减法,再算除法。 预设 生1:一本书有70页,已经看了46页,余下的想用8天看完,平均每天看几页? 生2:妈妈有70元,买了一个46元的书包,余下的钱都买8元一本的日记本,能买多少本这样的日记本?
5.小结。 师:生活中有许多问题可以用带小括号的混合运算来解决,我们要养成学数学用数学的习惯,让数学知识真正服务于我们的生活,同时提高大家解决问题的能力。 设计意图:通过此环节,使学生明确同一个算式可以解决生活中不同的问题,并加深学生对带小括号的混合运算的理解,从而提高学生解决此类问题的能力。 ⊙巩固练习 1.完成教材10页3题。 (请学生独立阅读题目,分析数量关系,列式解答) 2.完成教材10页4题。 (请学生先说一说算式的运算顺序,再仔细观察情境图,说一说这个算式能解决的问题) ⊙课堂总结 这节课你学会了什么?还有哪些不懂的问题?
⊙布置作业 教材10页6题,12页6题。 板书设计 过河(二) 信息:大车限乘46位乘客,小车限乘8位乘客,一共70人,先坐满大车,剩下的坐小车。 问题:至少需要多少辆小车? 列式解答: (70-46)÷8 =24÷8
=3(辆) 答:至少需要3辆小车。
|