|
本节课的教学目标是:继续经历利用二次函数解决实际最值问题;会综合运用二次函数和其他数学知识解决如有关距离、利润等的函数最值问题;发展应用数学解决问题的能力,体会数学与生活的密切联系和数学的应用价值。
本节课只有两个例题,第一个例题是有关距离问题,第二个例题是有关利润的问题。原计划本节课用一节课的时间,但是在实际操作过程中,第一个例题就用了一节课 的时间,所以本节课要用两个课时来上。首先是复习了函数的应用,问学生经过前面对二次函数学习,给他们留下最深刻的是什么?学生马上能想到二次函数的最值,然后引导学生利用二次函数求只值问题应该注意的事项。1、根据实际问题求出函数解析式,求出自变良取值范围;2、把解析式化成配方式,或者把利用公式 来求出函数的顶点坐标。3、检查顶点的横坐标是否在自变量的取值范围内。
举例 有最大值还是最小值,什么时候能取到最大或者最小值?变化例子是否有最大或者最小值,什么时候取到最大或者最小值?这样做一方面巩固了最大值的取法,而且还为距离的最值问题做好铺垫。例题的教学采取多媒体展示,根据提供的信息化出图形,引导学生观察,求距离可以根据勾股定理列出代数式。代数式是,问题转化为怎样求这个代数式的最小值。学生很自然想到,要使代数式的值最小,也就是被开方数要最小,也就想到转化为配方形式;解法二,利用公式求出。对于第二个例题,引入的时候先回顾有关列利润的一元二次方程问题,经过市场调查,某种商品的进价为为每件6元,专卖店的每日固定成本为150元.当销售价为每件10元时,日均销售量为100件,单价每将低1元,日均销售量增加40件.要使利润500元,销售价应该定多少?
这样做就为利润问题列出函数解析式奠定了基础,主要的难点是从表格中提供的信息,总结出单价每增加一元,日均销售良就减少40瓶。根据这一规律,就不难列出y关于x的函数解析式。引导学生思考,你认为商家要追求最大利润,销售价格是定的越低越好还是越高越好?让学生再次体会数学与生活的的密切联系和数学的应用价值 |
|