|
沙发
楼主 |
发表于 2014-1-24 18:00:17
|
只看该作者
2.用分类思想归纳整理知识。
当知识积累到一定程度往往需要用分类来归纳所学的知识,到了中高年级尤其如此,因此需要学生掌握合理的分类方法,满足互斥、无遗漏、最简便的原则,以形成完善合理的知识网络。
在小学阶段,学生需要掌握的内容,根据数学分类的方法常有以下几种:(1)根据数量特征和数量关系进行分类。如整数、小数、分数的分类,运算法则的分类,等等。(2)根据图形的特征或相互间的关系进行分类。如三角形按角分类,有锐角三角形、直角三角形、钝角三角形。(3)根据解决问题的探索方向进行分类。如:直线行程问题和环形行程问题,,可以看出来他们在解决问题的方法上有相似性。
为了使学生形成良好的知识结构,用分类归纳整理时,往往需要同时借助比较、对比、举例等方法来突出各个知识间的区别和联系,补缺查漏,消除错误的知识印象。为了更加形象直观,也往往借助表格、图表等表示,如“韦恩图”就是个很好的工具。
另外,在运用分类思想整理归纳知识时,教师应引导学生自主构建知识网络。
3. 用分类思想解决问题。
利用分类思想解题是小学数学中一个重要且有效的解题方法。它的关键在于正确分类,做到既不重复又不遗漏,并能有效纠正学生的无序性甚至盲目拼凑的毛病,培养学生慎密的思维。
例如,用 1、2、3 三个数字卡片可以排成几个三位数,让学生做一做,排一排。有的学生很快排出来了,但有些学生却排不完整。这时教师要指导学生分类讨论,首先确定百位上的数字是1时,有哪几个三位数?(123、132),百位上的数字是2时,有哪几个三位数?(213、231),百位上的数字是3时,有哪几个三位数?(312、321)。
4.根据数学的量性特征进行分类。
郑毓信教授认为,因为数学抽象的特殊性,决定了在数学分类中我们所关注的只是对象的量性特征即数量关系和空间形式等,而完全不去考虑它们质的内容。举例来说,在有关分类教学时,教师往往首先拿出事先准备好的一些模块,其中不仅呈现出了各种不同的形状,如三角形、四边形、圆形等,而且也被涂成了各种不同的颜色,如红色、黄色、绿色等,并且它们是用一些不同的材料制成的,包括木制的、硬纸片的、塑料的等,教师要求学生对这些模块进行分类。在一般情况下,学生往往会给出多种不同的分类方法,教师对此往往也会普遍地加以肯定,甚至还会积极地鼓励学生去提出新的、更多的分类方法。然而在数学抽象中,我们所关注的是对象的量性特征(包括数量关系和空间形式等),而完全舍弃了 “非数学成分”(质的内容),因此只有将所有三角形的模块归成一类、所有四边形的模块归成另一类,才可以看成是与数学直接相关的,而其他的一些分类方法,如按照颜色、材料去进行分类等,就都不是数学所主要关注的分类。因此我们不应同样地去肯定各种可能的分类方法,而应对学生所给出的各种方法作出必要的“优化”。
参考文献:
[1] 强振宇,杨磊. 分类思想在小学数学教学中的渗透[J].教育研究,2006(12)
[2]郑毓信.数学思维与小学数学[M].南京:江苏教育出版社,2008
[3] 顾争光. 初探小学数学教学中分类思想方法孕育的艺术[J].小学教学参考,2010(6)
[4] 吴振金.小学数学分类思想教学策略[J].福建基础教育研究,2010(6)
[5]郑毓信.数学中的分类[J].小学数学教学版,2008(6)
[6]王凯成.小学数学教材中的分类思想研究[J],2011(6)
|
|