六、 建立几何模型
几何应用题内容丰富,诸如测量、取料、剪裁、方案设计、美化设计等等。解答此类问题的一般方法是认真分析题意,把实际问题进行抽象转化为几何问题,进而运用数学知识求解。
例6.(2004年淄博市中考题)在日常生活中,我们经常看到一些窗户上安装着遮阳蓬,如图(1).现在要为一个面向正南的窗户设计安装一个遮阳蓬,已知该地区冬天正午太阳最低时,光线与水平线的夹角为34°;夏天正午太阳最高时,光线与水平线的夹角为76°.
把图①画成图②,其中AB表示窗户的高,BCD表示直角形遮阳蓬.
⑴遮阳蓬BCD怎样设计,才能正好在冬天正午太阳最低时光线最大限度地射入室内而夏天正午太阳最高时光线刚好不射入室内?请在图③中画图表示;
⑵已知AB=150cm,在⑴的条件下,求出BC,CD的长度(精确到1cm).
解:(1)如图.
(2)如图,设BC=x,CD=y.
在Rt△ADC和Rt△DBC中,
由题意,得
把②代入①,得
,
(cm),
(cm).
答:BC、CD的长度分别约为30cm、45cm。
七、建立线性规划模型
近年来,中考试题中开始出现线性规划问题。所谓线性规划,是指求线性函数在线性(不等式或等式)约束下达最(小或大)值的问题。线性规划广泛应用于工农业、军事、交通运输、决策管理与规划、科学实验等领域。
例7.(2004年山东省烟台市)先阅读下面的材料,然后解答问题:
在一条直线上有依次排列的n(n>1)台机床在工作,我们要设置零件供应站P,使这n台机床到供应站P的距离总和最小,要解决这个问题,先退到比较简单的情形:
如图①,如果直线上有2台机床时,很明显设在A1和A2之间的任何地方都行,因为甲和乙走的距离之和等于A1到A2的距离.
如图②,如果直线上有3台机床时,不难判断,供应站设在中间一台机床A2处最合适,因为如果P放在A2处,甲乙和丙所走的距离之和恰好为A1到A3的距离,而如果把P放到别处,例如D处,那么甲和丙所走的距离之和仍是A1到A3的距离,可是乙还得走从A2到D的这一段,在是多出来的,一次P放在A2处是最佳选择.
不难知道,如果直线上有4台机床,P应设在第2台与第3台之间的任何地方;有5台机床,P应设在第3台的位置.
问题⑴:有n台机床时,P应设置在何处?
问题⑵:根据问题⑴的结论,求︱x-1︱+︱x-2︱+︱x-3︱+…+︱x-617︱的最小值.
解:⑴当n为偶数时,P应设在第台和()台之间的任何地方
当n为奇数时,p应设在第台的位置
⑵根据绝对值的几何意义,求︱x-1︱+︱x-2︱+︱x-3︱+…+︱x-617︱的最小值就是在数轴上找出表示x的点,使它到表示1,2,…,617各点的距离之和最小,根据问题1的结论,当x=309时,原式的值最小
最小值是:︱309-1︱+︱309-2︱+︱309-3︱+…+︱309-308︱+0+︱309-310︱+︱309-311︱+…+︱309-311︱++︱309-616︱+︱309-617︱
=308+307+306+…+1+1+2+…+308=308×309=95 172
总之,这类问题透视热点,力求创新,将是今后中考命题的趋势。希望同学们在日常的学习过程中,掌握建模的方法、规律,切实提高自己解决实际问题的能力。 |