绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

查看: 17693|回复: 11
打印 上一主题 下一主题

初中数学解题技巧方法辅导集锦

[复制链接]
跳转到指定楼层
楼主
发表于 2011-9-14 07:05:00 | 只看该作者 回帖奖励 |正序浏览 |阅读模式
重新认识“钟面角”
湖北省黄石市下陆中学 宋毓彬
日常生活中,我们几乎每天都要看钟表,然而我们对钟表表面上的时针、分针、秒针之间的夹角(即“钟面角”)问题可能并没有在意.其实钟面角中蕴涵着丰富的数学知识,我们一起来探究一下“钟面角”问题吧.

一、认识“钟面角”

要分析钟面角,我们首先要结合其图形特点,寻找并发现它们的变化规律.

⑴钟表的表面特点:钟表的表面都是一个圆形,共有12个大格,每个大格间有5个小格.圆形的表面恰好对应着一个周角360°,每个大格对应30°角,每个小格对应6°角.表面一般有时针、分针、秒针三根指针.

⑵钟表时针、分针、秒针的转动情况:时针每小时转1大格,每12分钟转1小格,每12个小时转1个圆周;分针每5分钟转一大格,每1分钟转1小格,每小时转1个圆周;秒针5秒钟转1大格,每1秒钟转1小格,每1分钟转一个圆周.

⑶时针、分针、秒针的转速:有了以上的认识,我们很容易计算出相应指针的转速:①钟表的时针转速为:30°/小时或0.5°/分钟;②分针的转速为:6°/分钟或0.1°/秒钟;③秒针的转速为:6°/秒.

有了这些对钟面角的基本认识,我们就可以探究与钟面角有关的问题了.

二、解决与钟面角有关的数学问题

  ⒈计算从某一时刻到另一时刻,时针(分针)转过的角度

⑴公式法:时(分)针从某一时刻到另一时刻转过的角度=时(分)针转过的时间×时(分)针的转速(注意统一单位).

⑵观察法:若时(分)针转过了a大格b小格,则时(分)针从某一时刻到另一时刻转过的角度为:30a+6b°.

例1.⑴从3:15到7:45,时针转过        度.

⑵从1:45到2:05,分针转过        度.

分析:⑴从3:15到7:45,时针走过的时间为4.5小时(270分钟),∴时针转过的角度为:4.5×30°=135°(或270×0.5°=135°)

    或用观察法:时针共走了4大格2.5小格,∴时针转过的角度为:4×30+2.5×6=135°.

⑵从1:45到2:05,分钟走过的时间为20分钟,∴分针转过的角度为:20×6°=120°.

    或用观察法:分针共走了4个大格(或20小格)∴分针转过的角度为:4×30°=120°(或:20×6°=120°).

  ⒉计算某一时刻时针(分针)与分针(秒针)之间的夹角

⑴求差法:以0点(12时)为基准到某一时刻止,时针转过的角度与分针在整点后的时间转过的角度差,即时针、分针之间的夹角.

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 顶 踩
回复

使用道具 举报

12#
发表于 2014-8-23 13:15:50 | 只看该作者
4xy²-5xy-6y²
回复

使用道具 举报

11#
 楼主| 发表于 2011-9-14 07:10:00 | 只看该作者
解读近似数的精确度
湖北省黄石市下陆中学 宋毓彬
近似数的精确度表示近似数与准确数的接近程度。精确度有两种表示形式:一是用精确到哪一位(精确位)表示,一是用保留几个有效数字(有效数字)表示。精确度的两种表示形式的实际意义及取值要求是不一样的,在学习时要加以区别。



一、解读“精确到哪一位”



⑴对一个数取近似数,要求精确到某一个数位,我们就将所要求精确到的数位后一位数字“四舍五入”得到近似数。该近似数最后一位数是由“四舍五入”得到的数,最后一位数所在的数位即是精确到的数位。



如:近似数3.52,最后一位数字2是由“四舍五入”得到的数,2所在的数位为百分位,即近似数3.52精确到百分位。



又如:9989.653(精确到个位)的近似数,将个位后的十分位上的6“四舍五入”,近似数为9990。1.35835(精确到0.001)的近似数,将千分位后的万分位上的3“四舍五入”,近似数为1.358。



⑵精确到哪一位表示的实际意义:主要用于表示近似数与准确数之间误差绝对值的大小。例如,在测量长度时,精确到0.1米,说明结果与实际相差不大于0.05米。



⑶确定用科学记数法表示的近似数、带数量级单位的近似数精确到哪一位时,要先将该数还原成原来的数,再看它最后一个数字所在的数位即精确到哪一位。



如近似数1.230×106,还原成原数为1230000,最后一位数字0所在的数位为千位,因此近似数1.230×106精确到千位(而不是千分位!)。



近似数5.04万,还原成原数为50400,最后一个数字4所在的数位为百位,因此近似数5.04万精确到百位(而不是百分位!)。



⑷近似数的最后一位数字是由“四舍五入”得到的数,根据近似数可以确定准确数的取值范围。一般地,近似数m所表示的准确数a的范围是:m-精确位后一位的5个单位≤a<m+精确位后一位的5个单位。



如近似数8.40所表示的准确数a的范围是8.40-0.005≤a<8.40+0.005,即8.395≤a<8.405。



二、解读有效数字



⑴从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。有效数字的起止,尤其要注意先确定出“左边第一个非0的数”。“左边第一个非0的数”前面的0,都不是有效数字;“左边第一个非0的数”后面的0,则都是有效数字。



如:近似数0.005070的有效数字,“左边第一个非0的数”为5,5前面的0不是有效数字,5后面的0是有效数字,因此近似数0.005070的有效数字有5、0、7、0共4个。



⑵有效数字的实际意义:主要用于比较几个近似数哪个更精确一些。一般地保留的有效数字越多越精确。如对圆周率取近似数,保留3个有效数字所得的3.14,比保留两个有效数字所得的3.1更精确。



⑶按有效数字要求取近似数,一般要保留几位有效数字,就从“左边第一个非0的数”开始向右数到要保留的有效数字位数后一个数字进行“四舍五入”。最后一个有效数字为由“四舍五入”得到的数。观察最后一位有效数字的后一位数字,可得到近似数m所表示的准确数a的取值范围。m-最后一位有效数字后一位的5个单位≤a<m+最后一位有效数字后一位的5个单位。



如:保留三个有效数字得21.0的近似数,其准确数的取值范围是          。



最后一个有效数字0是“四舍五入”得到的数,所在数位为十分位,因此21.0-0.05≤a<21.0+0.05,即20.95≤a<21.05。



⑷科学记数法表示的近似数的有效数字,仅是指a×10n中a的有效数字;带数量级单位的近似数的有效数字,则不考虑数量级所表示的0的个数。



如:近似数9.601×1010的有效数字为4个,分别是9、6、0、1。近似数3.45万的有效数字为3个,分别是3、4、5。



⑸近似数最后一个有效数字所在的数位,即表示近似数“精确到哪一位”。



如:把0.0503045保留4个有效数字所得的近似数精确到     位。“左边第一个非0的数”为5,从5开始向右数至第五个数为4,对4“四舍五入”得近似数为0.05030,最后一个有效数字为0,所在的数位为十万分位。故把0.0503045保留4个有效数字所得的近似数精确到十万分位。



(发表于《数学辅导报》2008年12月26期)
回复

使用道具 举报

10#
 楼主| 发表于 2011-9-14 07:10:00 | 只看该作者
有理数中的“非负性”问题



湖北省黄石市下陆中学 宋毓彬

我们知道:有理数中,任何数的绝对值和偶次方都是一个“非负数”,即00n为整数)。我们称其具有非负性。这两条性质常作为求解很多有理数问题的隐含条件,我们要熟练掌握。
一、绝对值的非负性
1 mn满足,则-m·n=
解:∵  
3m-6=0 n+4=0 ∴m=2 n=-4
∴—mn=-2×(-4)=8 
2
求:的值
解:∵

a-1=0 ab-2=0 ∴a=1 b=2
  原式=
    =
    =1-
二、偶次幂的非负性
例3已知,求:⑴;  ⑵ 
解:∵ 又
∴x-2=0 3-y=0 ∴x=2 y=3
=8  ⑵ 
  由上面三道例题,我们可以看出:绝对值、偶次幂的非负性通常都是作为隐含条件出现的。解答这类问题的一般步骤是:①先根据绝对值或偶次幂的非负性,求出有关字母的值;②再将所求得的字母值代入相应的代数式。求解时,还要注意突出分析过程,而不能直接赋值计算。


(发表于《数学辅导报》(七年级)2008年8月11日)
回复

使用道具 举报

9#
 楼主| 发表于 2011-9-14 07:10:00 | 只看该作者
构造性辅助线四例



湖北省黄石市下陆中学 宋毓彬

在几何证明中除常见的连接、延长、作平行、作垂直等辅助线之外,还有一种作辅助线的思路,就是通过巧妙的几何变换构造出全等或是特殊图形。这种作辅助线方法我们通常称为构造性辅助线。


一、翻折构造


1 如图1,在等腰直角△ABC的斜边AB上,取两点MN,使∠MCN=45°,记AM=mMN=xBN=n。则以xmn为边长的三角形的形状是(


A.锐角三角形;    B.直角三角形;
C.钝角三角形;    D.xmn变化而变化


分析:⑴要判断以xmn为边长的三角形的形状,关键是要设法将这三条线段长集中到同一个三角形中;


⑵如何用好已知条件中的∠MCN=45°,应同时考虑∠ACM+BCN=45°。


⑶为将长为xmn的三条线段集中,可考虑将△ACM沿CM翻折(如图),这样可将mx两条线段集中。再连接PN,若能证明PN=BN,则长为xmn的三条线段就集中到了△PMN中。


由∠ACM+BCN=45°,∠PCM+PCN=45°∴∠BCN=PCN


可证△BCN≌△PCNPN=BN=n


∴∠MPC=A=45°,∠NPC=B=45°
∴∠MPN=MPC+NPC=90°


∴以xmn为边长的三角形的形状直角三角形。


提示:当要证的结论需集中某些线段,且图形中出现了等量角的关系、角的平分线等条件时,可考虑翻折构造。

二、旋转构造


2 如图2,已知O是等边三角形△ABC内一点,∠AOB、∠BOC、∠AOC的度数之比为654,在以OAOBOC为边的三角形中,求此三边所对的度数。

分析:⑴解决此题的关键依然是要将OAOBOC三条线段集中到同一个三角形中。


⑵考虑到等边三角形的的特点,若将△AOBA点旋转60°到△AMC,因为△AOM为等边三角形,MO=AO,又OB=MC,则OAOBOC就集中到了△COM中。OAOBOC为三边所对的角即为求△COM的三个内角。


由∠AOB、∠BOC、∠AOC的度数之比为654,设∠AOB=6x,∠BOC=5x,∠AOC=4x


则有6x+5x+4x=360°,x=24°,


AMC=AOB=6x=144°,∠AOC=4x=96°
由∠AOM=AMO=60°


∴∠MOC=AOC-AOM=36°;∠OMC=AMC-AMO=84°


ACM=180°-(∠MOC+OMC=60°


∴以OAOBOC为边的三角形三边所对的度数分别为:60°、36°、84°。


提示:旋转构造一般多用于等边三角形、正方形、等腰直角三角形中,主要是应同时考虑到旋转后的对应边能够重合,旋转角度能构成特殊角等两个条件。

三、轴对称构造


3 如图3,∠AOB=45°,角内有点PPO=10,在两边上有点QR(均不同于O),则△PQR的周长的最小值是



分析:⑴要确定△PQR的周长最小,关键是如何确定QR的位置。而只有利用轴对称将折线段化为直线段才能求出最小值。


⑵已知条件中∠AOB=45°,如果分别作P关于OAOB的对称点MN,连OMON,根据轴对称性质则有∠MON=90°,可构造出直角三角形。


P关于OAOB的对称点MN,连MNOAOB的交点QR,由轴对称性质,此时△PQR的周长的最小,最小周长等于线段MN的长度。


OMON。由轴对称性质,OM=OP=ON=10,∠MON=90°,MN=10


提示:一般地,求证几条折线段之和的问题通常考虑作轴对称,将折线段转化为直线段

四、特殊构造


4 如图4,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=CD。求证:BD2=AB2+BC2



分析:⑴所求证的关系为平方形式,联想到构造直角三角形运用勾股定理求证。∠ABC=30°,已BC为边向外作等边三角形△BCE,则可得到∠ABE=90°,BC=BE,可将AB2+BC2转化为直角三角形△ABEAB2+BE2。这样只需证明AE=BD即可。


⑵由∠ADC=60°,AD=CD,连接AC,则△ADC为等边三角形。易观察到易证△DCB≌△ACE,于是AE=BD


提示:根据题设条件中的特殊角构造特殊图形(等边三角形、直角三角形、正方形等),也是几何证明中常用的辅助线。


作者简介:宋毓彬,男,42岁,中学数学高级教师。在《中学数学教学参考》、《数理天地》、《中学生数学》、《数理化学习》、《数理化解题研究》、《中学课程辅导》、《数学周报》、《数学辅导报》等报刊发表教学辅导类文章40多篇。主要致力于初中数学中考及解题方法、技巧等教学方面的研究。
回复

使用道具 举报

8#
 楼主| 发表于 2011-9-14 07:09:00 | 只看该作者
有趣的数迷诗



湖北省黄石市下陆中学 陈 勇

数谜诗,顾名思义就是数字猜谜诗,它既是数字谜语,又是趣味数学.它将趣味数学题,采用儿歌的形式表达出来,活泼生动,妙趣横生,很受人们的喜爱.现列举几例供欣赏,请同学们想一想,做一做.
一、林中麻雀
一群麻雀入竹林,争先恐后竹上停.一根竹子落两只,竹子便会多一根.一根竹子落一只,竹子便会少一根.请君细想算算看,麻雀几只竹几根?
解: 设竹子有x根.依题意,得:2(x-1)=x+1.解得x=3,从而x+1=4.故有竹子3根. 麻雀4只.
二、悟空寻妖踪
悟空顺风寻妖踪,千里只用四分钟.归时四分行六百,试问风速是多少?  
解析:题目的意思是:孙悟空追寻妖精的行踪,去时顺风,lO00里只用了4分钟;回来时逆风,4分钟只走了600里,试求风的速度.
:设风的速度为每分钟里,依题意,得:解得=50.故风速为每分钟50里.

三、童子买肉
童子来买肉,难言钱数目.斤少四十,九两多十六.问能算者,与多少肉?  
解析:题目的意思是:一个小孩到肉店来买肉,说不出带了多少钱,知道他带的钱买一斤(古时1斤=16两)肉还差40文,买9两肉又多出16文,那么他带的钱能买多少肉?
:设每两肉文,则小孩带的钱为文或文,依题意,得:= 解得=8.则小孩带钱.所以小孩能买(两)肉.
四、壶内原有多少酒?  
李白街上走,提壶去买酒.遇店加一倍,见花喝一斗.三遇店和花,喝光壶中酒.试问酒壶中,原有多少酒?
解析:题目的意思是:李白拿着本来还有酒的酒壶去买酒,每次遇到小店就使壶中的酒增加一倍;每次看到花,他就饮酒作诗,喝去一斗酒(斗:我国古代的一种酒器).这样遇到三次小店和花,最后就把壶中的酒全部喝光了,试问酒壶中原来有多少酒? (默认李白遇到店和花的顺序为: 店、花、店、花、店、花)
:设壶中原有酒斗,依题意,得:,解得,即壶中原有酒
五、寺内僧多少?  
巍巍古寺在山林,不知寺内几多僧.三百六十四只碗,看看用尽不差争.三人共食一碗饭,四人共吃一碗羹.请问先生名算者,算来寺内几多僧?  
解析:题目的意思是::三个僧人吃一碗饭,四个僧人吃一碗羹,刚好用了364只碗,请问寺内有多少僧人?  
:设寺院内共有个僧人.依题意,得:解得:,即寺院内有僧人624人.
回复

使用道具 举报

7#
 楼主| 发表于 2011-9-14 07:08:00 | 只看该作者
五种辅助线助你证全等



湖北省黄石市下陆中学 宋毓彬

在证明三角形全等时有时需添加辅助线,对学习几何证明不久的学生而言往往是难点.下面介绍证明全等时常见的五种辅助线,供同学们学习时参考.

一、截长补短


一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等.


1.如图1,在△ABC中,∠ABC=60°,ADCE分别平分∠BAC、∠ACB.求证:AC=AE+CD

              


分析:要证AC=AE+CDAECD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD


证明:在AC上截取AF=AE,连接OF


ADCE分别平分∠BAC、∠ACB,∠ABC=60°


∴∠1+2=60°,∴∠4=6=1+2=60°.


显然,△AEO≌△AFO,∴∠5=4=60°,∴∠7=180°-(∠4+5=60°


在△DOC与△FOC中,∠6=7=60°,∠2=3OC=OC


∴△DOC≌△FOC CF=CD


AC=AF+CF=AE+CD

二、中线倍长


三角形问题中涉及中线(中点)时,将三角形中线延长一倍,构造全等三角形是常用的解题思路.


2.已知三角形的两边长分别为75,那么第三边上中线长x的取值范围是(
).


分析:要求第三边上中线的取值范围,只有将将中线与两个已知边转移到同一个三角形中,然后利用三角形的三边关系才能进行分析和判断.

                


解:如图2所示,设AB=7AC=5BC上中线AD=x


延长ADE,使DE = AD=x


ADBC边上的中线,∴BD=CD


ADC=EDB(对顶角)∴△ADC≌△EDB


BE=AC=5


∵在△ABE   AB-BEAEAB+BE


7-52x7+5     1x6

三、作平行线


当三角形问题中有相等的角或等腰等条件时,可通过作平行线将相等的角转换到某一个三角形中得到另外的等腰三角形或相等的角,从而为证明全等提供条件.


3.如图3,在等腰△ABC中,AB=AC,在AB上截取BD,在AC延长线上截取CE,且使CE=BD.连接DEBCF.求证:DF=EF

                   


分析:要证DF=EF,必须借助三角形全等.而现有图形中没有全等三角形.由等腰三角形条件,可知∠B=ACB,作DHAE,可得∠DHB=ACB.则△DBH为等腰三角形.


证明:作DHAEBCH


∴∠DHB=ACB


AB=AC,∴∠B=ACB


∴∠DHB=BDH=BD


CE=BD    DH= CE


DHAE,∠HDF=E  


DFH=EFC(对顶角)


∴△ DFH≌△EFCAAS
DF=EF

四、补全图形


在一些求证三角形问题中,延长某两条线段(边)相交,构成一个封闭的图形,可找到更多的相等关系,有助于问题的解决.


4.如图4,在△ABC中,AC=BC,∠B=90°,BD为∠ABC的平分线.若A点到直线BD的距离ADa,求BE的长.

                  


分析:题设中只有一条已知线段AD,且为直角边,而要求的BE为斜边.要找到它们之间的关系,需设法构造其他的全等三角形.


证明:延长ADBC相交于F


BD为∠ABC的平分线,BDAF


易证△ADB≌△FDB   FD= AD=a  AF=2a     F=BAD     


又∠BAD+ABD=90°,∠F+FAC=90°


∴∠ABD=FAC   


BD为∠ABC的平分线
∴∠ABD=CBE


∴∠FAC=CBE,而∠ECB=ACF=90°,AC=BC


∴△ACF≌△BCEASA
BE=AF=2a

五、利用角的平分线对称构造全等


角的平分线是角的对称轴,在证明全等过程中不仅提供了两个相等的角,还有一条公共边,利用角的平分线在角的两边上截取相等的线段,或向两边作垂线,对称构造出全等三角形是常用的证明方法.


5.如图5,在四边形ABCD中,已知BD平分∠ABC,∠A+C=180°.证明:AD=CD

                


分析:由角的平分线条件,在BC上截取BE=BA,可构造△ABD≌△EBD,从而AD=DE.则只要证明DE=CD


证明:在BC上截取BE=BA,连接DE


BD平分∠ABC,易证△ABD≌△EBD


AD=DE    A=BED


又∠A+C=180°,∠BED+DEC=180°


∴∠DEC=C,∴DE=CD


AD=CD
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2025-2-18 15:03

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表