绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

查看: 8144|回复: 1
打印 上一主题 下一主题

八年级数学上册优质课“变量与函数”教学设计及教后反思

[复制链接]
跳转到指定楼层
楼主
发表于 2011-8-18 20:26:00 | 只看该作者 回帖奖励 |正序浏览 |阅读模式
“变量与函数”教学反思
民航广州子弟学校 林俊伟
在沈阳抚顺的研讨会上,本人承担了《变量与函数》的教学任务.之前,我分别在本校与广州开发区中学分别上了一堂课.三节课,是一个实践、反思、改进、再实践的过程.经过课题组的点评与讨论,本人对概念课的教学设计与教学实践有了更深入的了解.

本设计呈现的课堂结构为:(1)揭示学习目标;(2)引入数学原型;(3)抽象出数学现实,逐步达致数学形式化的概念;(4)巩固概念练习(概念辨析);(5)小结(质疑).

1、如何揭示学习目标

概念课的引入要考虑学生关心的如下问题:这节课学什么概念?为什么要学这样的概念?

数学源于生活而高于生活,数学概念的引入可从生活的需要、数学的需要等方面引入.初中涉及的函数概念的核心是“量与量之间的特殊对应关系”.本课中,本人在导言中提出两个问题:“引例1,《名侦探柯南》中有这样一个情景:柯南根据案发现场的脚印,锁定疑犯的身高.你知道其中的道理吗?”、“引例2.我们班中同学A与职业相扑运动员,谁的饭量大?你能说明理由吗?”学生对上述问题既熟悉又感到意外.问题1涉及两个量的关系,脚印确定,对应的身高有多个取值;问题2涉及多个量的关系.上述问题,不仅仅是引起学生的注意,更重要的是让学生了解客观世界中量与量之间联系的多样性、复杂性,而函数研究的正是量与量之间的各种关系中的“特殊关系”.数学研究有时从最简单、特殊的情况入手,化繁为简.让学生明确,这一节课我们只研究两个量之间的特殊对应关系.“特殊在什么地方?”学生需带着这样的问题开始这一课的学习.

函数概念的引入应具有“整体观”,不仅要提供符合函数原型的单值对应的实例,还应提供其他的量与量之间关系的实例(如多个量的对应关系、两个量间的“一对多”关系等),使学生在更广泛的背景中经历筛选、提炼出新的数学知识的过程,逐步领悟“化繁为简”的数学研究方法.当然,这里的问题是作为研究“背景”呈现,教学时应作“虚化”处理,以突出主要内容.

2、如何选取合适的数学原型

从数学的“学术形态”看,数学原型所蕴藏的数学素材应与数学概念的内涵相一致;从数学的“教育形态”看,数学原型应真实、简洁、简单.真实指的是基于学生的生活现实、数学现实,它可以是生活中的实例,也可以是学生熟悉的动漫故事、童话故事等.简洁、简单指的是问题的表述应简洁,问题情境的设置要尽可能简单,全体学生对情境中的问题不应存在太大的理解困难,设计的问题情境要能突出将要学习的新知识的本质.

本设计采用了三个数学原型的问题:问题1,“票房收入与售出票数问题”(可用解析式表示);问题2,成绩登记表中的一次数学测试的“成绩与学号问题”(表格表示);问题3,“气温变化与时间问题”(图象表示).这三个问题从不同层面、不同角度体现函数的“单值对应关系”,也都是学生生活中的真实问题,问题简单易懂,学生容易基于上述生活实例抽象出新的数学概念.

由于不少学生在理解“弹簧问题”时面临列函数关系式的困难,可能冲淡对函数概念的学习,故本节课没有采用该引例。

对于繁难的概念,我们更应注重为学生构建学生所熟悉的、简单的数学现实,化繁为简、化抽象为形象.过难、过繁的背景会成为学生学习抽象新概念的拦路虎.

3、如何引领学生经历数学化、形式化的过程

“数学教学是数学活动的教学”,面对抽象的数学内容,老师会想方设法创设易于学生理解的数学情境.但如何从具体的实例中提炼出数学的素材、形式化为数学知识是教学的关键环节.从具体情境到数学知识的形式化,需要教师为学生搭建合适的“脚手架”,提出能引发学生思考、过渡到数学形式化的问题.本人在学生完成问题情境的几个问题后,提出系列问题“上述几个问题中,分别涉及哪些量的关系?哪些量的变化会引会另一个量的变化?通过哪一个量可以确定另一个量?”

在与学生的交流过程中把重点内容板书,板书注重揭示两个量间的关系,引领学生经历数学概念的形成过程,引导学生认识为什么要引进变量、常量.由问题1~3的共性“单值对应关系”与“脚印与身高”问题中反映的“一对多关系”进行对比抽象出函数的概念,逐步了解如何给数学概念下定义,并理解概念的本质特征.

4、如何引用反例

学生对概念的理解需要经历一个从模糊到清晰的过程,通过正例与反例的对照,才能准确理解概念的内涵.反例引用的时机、反例的量要恰到好处.过早、过多的反例会干扰学生对概念的准确理解.

概念生成的前期提供的各种量的关系中的实例提供的是一个更为广泛的背景,让学生经历从各种关系中抽象出“特殊的单值对应关系”,从而体会产生函数概念的背景.这样的引入有利于避免概念教学中“一个定义,三点注意”的倾向.

在本校上课时,从“气温问题”中的函数图象引导学生发现时间t取定一个值时,所得T的对应值只有一个,学生习惯性地提出问题“温度T取定一个值时,时间t 是否唯一确定?”全体同学从正反两个方面认识“唯一确定”的含义,在这样的基础上再归纳出函数的定义,学生较好地掌握函数中的单值对应关系.

在广州开发区中学上课时,在概念的形成前期,忙中出漏,没有抓住“气温问题”中的函数图象讲解“唯一确定”,特别是没有从反面(温度T=8,时间t=12~14)帮助学生理解“唯一性”,也没有强化“脚印与身高”反映的“一对多关系”,只在涉及“单值对应关系”的实例基础上引出概念,也跳过后面提到的三个反例,学生在后面的概念辨析练习中错漏较多,为纠正学生的理解花了九牛二虎之力.

在抚顺上课时,在完成例1、例2的教学后,还用到如下反例:问题2变式“在这次数学测试中,成绩是学号的函数吗?”、问题3变式“北京春季某一天的时间t是气温T的函数吗?”、练习2(3)变式“汽车以60千米/秒的速度匀速行驶,t是s的函数吗?”,学生借助这三个逆向变式,根据生活经验理解“两个量间的对应关系”是否为“单值对应关系”,有利于学生明确“由哪一个量能唯一确定另一个量”,从而更好地理解自变量与函数的关系,更重要的是让学生养成逆向思维的习惯.

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 顶 踩
回复

使用道具 举报

沙发
 楼主| 发表于 2011-8-18 20:27:00 | 只看该作者
“变量与函数”教学设计



山东惠民皂户李乡中学  康风星

教学目标
1、运用丰富的实例,使学生在具体情境中领悟函数概念的意义,了解常量与变量的含义,能分清实例中的常量与变量,了解自变量与函数的意义。
2、通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,以提高分析问题和解决问题的能力。
3、引导学生探索实际问题中的数量关系,培养对学习的兴趣和积极参与数学活动的热情。在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心。
教学难点
函数概念的形成过程
知识重点
正确理解函数的概念
教学过程(师生活动)
设计理念
创设情境提出问题
一、引入
1、汽车以60千米/时的速度匀速行驶,行驶里程为千米,行驶时间为小时,先填写下表,再试着用含的式子表示
(小时)
1
2
3
4
5
(千米)






2、要画一个面积S为10的圆,圆的半径应取多少?圆面积为呢?怎样用含圆面积S的式子表示圆半径

让学生充分发表意见,然后教师点评。
挖掘和利用实际生活中与变量有关的问题情景,让学生经历探索具体情景中两个变量关系的过程,直接获得探索变量关系的体验。
动手实验
3.用10cm长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化。记录不同的长方形的长度值。计算相应的长方形面积的值,探索它们的变化规律。设长方形的长为cm,面积为S,怎样用含的式子表示S?
cm












4. 如图所示,用火柴棒摆图形,按照这样的规律继续摆下去,第四个图形需要_________根火柴棒,第五个图形需要_________根火柴棒,第n个图形需要________根火柴棒。

分组进行实验活动,然后各组选派代表汇报。


通过动手实验,学生的学习积极性被充分调动起来,进一步深刻体会了变量间的关系,学会了运用表格形式来表示实验信息。
探究新知
二、变量与常量的概念
1、在学生动手实验并充分发表自己意见的基础上,师生共同归纳:上面的问题和实验都反映了不同事物的变化过程。其中有些量(例如时间,里程的值)是按照某种规律变化的。在一个变化过程中,数值发生变化的量,我们称之为变量。也有些量是始终不变的,如上面问题中的速度60(千米/时)等,我们称之为常量。
2、请具体指出上面这些问题和实验中,哪些量是变量,哪些量是常量。
3、举出一些变化的实例,指出其中的变量和常量。
分组活动,先独立思考,然后组内交流并作记录,最后各组选派代表汇报
三、函数的概念
1、在前面的每个问题和实验中,是否各有两个变量?同一个问题中的变量之间有什么联系?
师生分析得出:上面的每个问题和实验中的两个变量互相联系。当其中一个变量取定一个值时,另一个变量就有惟一确定的值。
1、 一般来说,在一个变化过程中,如果有两个变量,并且对于的每一个确定的值,都有惟一确定的值与其对应,那么我们就说是自变量,的函数。如果当,那么叫做当自变量的值为时的函数值。

例如在问题1中,时间是自变量,里程的函数。时,其函数值为60,时,其函数值为120。
四、例题
1、一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量(单位:L)随行驶里程(单位:km)的增加而减少,平均耗油量为0.1L/km。
问题1:写出表示的函数关系的式子。
问题2:指出自变量的取值范围。
问题3:汽车行驶200km时,油箱中还有多少汽油?
学生分组讨论、交流、说出各自得到的结论,最后师生共同归纳,得出
的函数关系式是
⑵自变量的取值范围是0≤≤500。
⑶汽车行驶200km时,油箱中还有30L汽油。
教师提示:确定自变量的取值范围时,不仅要考虑到函数关系式必须有意义,而且还要注意问题的实际意义。
2.一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2m。
(1)
在这一变化过程中反映了哪两个变量之间的关系?它们之间可建立怎样的函数关系?
(2)
4.5秒时小球的速度为多少?


培养学生主动参与、合作交流并能用数学的眼光看待世界的意识,提高观察、分析、概括和抽象等的能力。
巩固练习
1. 说出下列公式中的常量和变量
(1)
设圆的半径为R,周长为C,则,其中常量为_____,变量为______
(2)
球的表面积S与球半径R的关系式为,其中常量为_____,变量为______
2. 在△ABC中,设它的底边是a,底边上的高是h,则三角形的面积为,指出下列各式中的常量和变量:
(1)
S=6h ,常量为_____,变量为______
(2)
,常量为_____,变量为______
(3)
S=3a,常量为_____,变量为______

巩固变量与函数的概念,让学生充分体会到许多问题中的变量关系都存在着函数关系
小结与作业

课堂小结
1、常量与变量的概念
2、函数的定义;

通过总结与归纳,完善学生已有的知识结构。
本课教育评注(课堂设计理念,实际教学效果及改进设想)
变量与函数的概念把学生由常量数学引入变量数学,是学生数学认识上的一天飞跃。因此,设计本课时应根据学生的认识基础,创设在一定历史条件下的现实情境,使学生从中感知到变量函数的存在和意义,体会变量之间的相互依存关系和变化规律。遵循从具体到抽象、感性到理性的渐进认识规律和以教师为主导、学生为主体的教学原则,引导学生探究新知,引导学生在观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,并在概念的形成过程中培养学生的观察、分析概括和抽象等的能力。同时在引导学生探索变量之间的规律,抽象出函数概念的过程中,要注重学生的过程经历和体验,让学生领悟到现实生活中存在着多姿多彩的数学问题,并能从中提出问题、分析问题和解决问题。还要培养一种团队合作精神,提高探索、研究和应用的能力,使学生真正成为数学学习的主人。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2025-1-11 04:17

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表