绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

查看: 4325|回复: 2
打印 上一主题 下一主题

北师大版九年级上册数学第四章 图形的相似优秀考试卷有答案

[复制链接]
跳转到指定楼层
楼主
发表于 2020-8-25 10:43:13 | 只看该作者 回帖奖励 |正序浏览 |阅读模式
      这套新北师大版九年级数学上册课时练同步练习单元测试期中期末考试题免费下载为绿^色圃~中小学教育网整理,所有内容与教育部审定新编教材同步,本站试卷供大家免费使用下载打印。
       因为试卷复制时一些内容如图片之类无法显示,需要下载的老师、家长可以到帖子下面(往下拉)二楼下载WORD编辑的DOC附件使用!

第四章 图形的相似 测试卷
一、选择题
1.如图,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使△DEF与△ABC相似,则点F应是G,H,M,N四点中的(  )

A.H或N        B.G或H        C.M或N        D.G或M
2.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为(  )
A.1:2        B.1:3        C.1:4        D.1:16
3.如图,在△ABC中,DE∥BC,若=,则=(  )

A.        B.        C.        D.
4.在研究相似问题时,甲、乙同学的观点如下:
甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.
乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.
对于两人的观点,下列说法正确的是(  )

A.两人都对        B.两人都不对        C.甲对,乙不对        D.甲不对,乙对
5.如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是(  )

A.①②④        B.①③④        C.②③④        D.①②③
6.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于(  )

A.3:2        B.3:1        C.1:1        D.1:2
7.四边形ABCD与四边形A′B′C′D′位似,O为位似中心,若OA:OA′=1:3,则S四边形ABCD:S四边形A´B´C´D´=(  )
A.1:9        B.1:3        C.1:4        D.1:5
8.小刚身高1.7m,测得他站立在阳光下的影长为0.85m,紧接着他把手臂竖直举起,测得影长为1.1m,那么小刚举起手臂超出头顶(  )
A.0.5 m        B.0.55 m        C.0.6 m        D.2.2 m
9.如图,在△ABC中,DE∥BC,=,则下列结论中正确的是(  )

A.=                      B.=
C.=            D.=
10.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是(  )

A.        B.        C.        D.
二、填空题
11.若,则=        .
12.如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=      .
13.已知一个三角形的三边长分别为6,8和10,与其相似的一个三角形的最短边长为18,则较小三角形与较大三角形的相似比k=       .
14.在△ABC中,AB=12cm,BC=18cm,AC=24cm,另一个与它相似的△A′B′C′的周长为18cm,则△A′B′C各边长分别为        . 
15.如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为      .

16.如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为      .

17.如图,在△ABC中,DE∥BC,=,△ADE的面积是8,则△ABC的面积为        .

18.如图,在正方形ABCD中,点E是BC边上一点,且BE:EC=2:1,AE与BD交于点F,则△AFD与四边形DEFC的面积之比是     .

三、解答题
19.已知线段a,b,c,d成比例,且a=6dm,b=3dm,d=dm,求线段c的长度.





20.(6分)若=,求的值.



分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 顶 踩
回复

使用道具 举报

板凳
 楼主| 发表于 2020-8-25 10:43:47 | 只看该作者
答案解析
一、选择题
1.如图,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使△DEF与△ABC相似,则点F应是G,H,M,N四点中的(  )
               
A.H或N        B.G或H        C.M或N        D.G或M
【考点】相似三角形的判定.
【专题】压轴题;网格型;数形结合.
【分析】根据两三角形三条边对应成比例,两三角形相似进行解答.
【解答】解:设小正方形的边长为1,则△ABC的各边分别为3、、,只能F是M或N时,其各边是6、2,2.与△ABC各边对应成比例,故选C.
【点评】此题考查三边对应成比例,两三角形相似判定定理的应用.
 
2.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为(  )
A.1:2        B.1:3        C.1:4        D.1:16
【考点】相似三角形的性质.
【分析】由相似三角形周长的比等于相似比即可得出结果.
【解答】解:∵△ABC与△DEF的相似比为1:4,
∴△ABC与△DEF的周长比为1:4;
故选:C.
【点评】本题考查了相似三角形的性质;熟记相似三角形周长的比等于相似比是解决问题的关键.
 
3.如图,在△ABC中,DE∥BC,若=,则=(  )

A.        B.        C.        D.
【考点】平行线分线段成比例.
【分析】直接利用平行线分线段成比例定理写出答案即可.
【解答】解:∵DE∥BC,
∴==,
故选C.
【点评】本题考查了平行线分线段成比例定理,了解定理的内容是解答本题的关键,属于基础定义或定理,难度不大.

4.在研究相似问题时,甲、乙同学的观点如下:
甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.
乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.
对于两人的观点,下列说法正确的是(  )

A.两人都对        B.两人都不对        C.甲对,乙不对        D.甲不对,乙对
【考点】相似三角形的判定;相似多边形的性质.
【专题】数形结合.
【分析】甲:根据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,即可证得∠A=∠A′,∠B=∠B′,可得△ABC∽△A′B′C′;
乙:根据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,则可得,即新矩形与原矩形不相似.
【解答】解:甲:根据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,
∴∠A=∠A′,∠B=∠B′,
∴△ABC∽△A′B′C′,
∴甲说法正确;

乙:∵根据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,
∴,,
∴,
∴新矩形与原矩形不相似.
∴乙说法正确.
故选:A.

【点评】此题考查了相似三角形以及相似多边形的判定.此题难度不大,注意掌握数形结合思想的应用.
 
5.如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是(  )

A.①②④        B.①③④        C.②③④        D.①②③
【考点】相似三角形的判定.
【分析】根据有两组角对应相等的两个三角形相似可对①②进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对③④进行判断.
【解答】解:当∠ACP=∠B,
∠A公共,
所以△APC∽△ACB;
当∠APC=∠ACB,
∠A公共,
所以△APC∽△ACB;
当AC2=AP•AB,
即AC:AB=AP:AC,
∠A公共,
所以△APC∽△ACB;
当AB•CP=AP•CB,即=,
而∠PAC=∠CAB,
所以不能判断△APC和△ACB相似.
故选D.
【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.
 
6.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于(  )

A.3:2        B.3:1        C.1:1        D.1:2
【考点】相似三角形的判定与性质.
【专题】几何图形问题.
【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.
【解答】解:∵▱ABCD,故AD∥BC,
∴△DEF∽△BCF,
∴=,
∵点E是边AD的中点,
∴AE=DE=AD,
∴=.
故选:D.
【点评】此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF∽△BCF是解题关键.
 
7.四边形ABCD与四边形A′B′C′D′位似,O为位似中心,若OA:OA′=1:3,则S四边形ABCD:S四边形A´B´C´D´=(  )
A.1:9        B.1:3        C.1:4        D.1:5
【考点】位似图形的性质.
【分析】四边形ABCD与四边形A′B′C′D′位似,四边形ABCD∽四边形A′B′C′D′,可知AD∥A′D′,△OAD∽△OA′D′,求出相似比从而求得S四边形ABCD:S四边形A´B´C´D´的值.
【解答】解:∵四边形ABCD与四边形A′B′C′D′位似,
∴四边形ABCD∽四边形A′B′C′D′,
∴AD∥A′D′,
∴△OAD∽△OA′D′,
∴OA:O′A′=AD:A′D′=1:3,
∴S四边形ABCD:S四边形A´B´C´D´=1:9.
故选:A.

【点评】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.
 
8.小刚身高1.7m,测得他站立在阳光下的影长为0.85m,紧接着他把手臂竖直举起,测得影长为1.1m,那么小刚举起手臂超出头顶(  )
A.0.5 m        B.0.55 m        C.0.6 m        D.2.2 m
【考点】利用影子测量物体的高度.
【分析】根据在同一时物体的高度和影长成正比,设出手臂竖直举起时总高度x,即可列方程解出x的值,再减去身高即可得出小刚举起的手臂超出头顶的高度.
【解答】解:设手臂竖直举起时总高度xm,列方程得:
=,
解得x=2.2,
2.2﹣1.7=0.5m,
所以小刚举起的手臂超出头顶的高度为0.5m.
故选:A.
【点评】本题考查了相似三角形的应用,解答此题的关键是明确在同一时刻物体的高度和影长成正比.
 
9.如图,在△ABC中,DE∥BC,=,则下列结论中正确的是(  )

A.=        B.=
C.=        D.=
【考点】相似三角形的判定与性质.
【分析】由DE∥BC,可得△ADE∽△ABC,然后由相似三角形的对应边成比例可得,然后由=,即可判断A、B的正误,然后根据相似三角形的周长之比等于相似比,面积之比等于相似比的平方即可判断C、D的正误.
【解答】解:∵DE∥BC,
∴△ADE∽△ABC,
∴,
∵=,
∵=,
故A、B选项均错误;
∵△ADE∽△ABC,
∴==,=()2=,
故C选项正确,D选项错误.
故选C.
【点评】此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的对应边之比等于相似比;相似三角形的周长之比等于相似比;相似三角形的面积之比等于相似比的平方.
 
10.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是(  )

A.        B.        C.        D.
【考点】相似三角形的判定与性质.
【分析】易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形的性质可得=,=,从而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.
【解答】解:∵AB、CD、EF都与BD垂直,
回复

使用道具 举报

沙发
 楼主| 发表于 2020-8-25 10:43:26 | 只看该作者
北师大版九上第4章 测试卷(1).zip (258.5 KB, 下载次数: 465)




获取解压密码请打开微信扫描下面图片关注公众号即可自动发送
如果已关注并遗忘密码,请扫码进入公众号,在底部输入“密码”会自动回复最新下载密码。


回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2024-11-27 10:30

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表