绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

查看: 4220|回复: 1
打印 上一主题 下一主题

最新北师大版七年级数学下册4.3 第3课时 利用“边角边”判定三角形全等1同步练习word下载

[复制链接]
跳转到指定楼层
楼主
发表于 2020-5-6 19:56:49 | 只看该作者 回帖奖励 |正序浏览 |阅读模式
           此套北师大版七年级数学下册同步练习word下载绿色圃中小学教育网整理,供大家免费使用下载转载前请注明出处 部分图片、表格、公式、特殊符号无法显示,需要下载的老师、家长们可以到本帖子二楼(往下拉)下载word压缩文件附件使用!
        如有疑问,请联系网站底部工作人员,将第一时间为您解决问题!

文件预览:
1.如图,a,b,c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是(  ) 
2.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能说明△ABC≌△DEF,这个条件是(  )
A.∠A=∠D        B.BC=EF
C.∠ACB=∠F        D.AC=DF
3.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是(  )
A.∠A=∠C        B.∠D=∠B
C.AD∥BC        D.DF∥BE
4.如图,已知AB=AE,AC=AD,下列条件中不能判定△ABC≌△AED的是(  )
A.BC=ED           B.∠BAD=∠EAC
C.∠B=∠E        D.∠BAC=∠EAD
5.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,

詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO= AC;③△ABD≌△CBD,其中正确的结论有(  )
A.0个           B.1个          C.2个         D.3个
6.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD(  )
A.∠B=∠C        B.AD=AE
C.BD=CE           D.BE=CD
7.如图,AA',BB'表示两根长度相同的木条,若O是AA',BB'的中点,经测量AB=9 cm,则容器的内径A'B'为(  )
A.8 cm  B.9 cm  C.10 cm  D.11 cm
8.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是(  )
A.AC=BD            B.∠CAB=∠DBA
C.∠C=∠D         D.BC=AD
9.如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA.试说明:AC=BD
10.如图,在△ABC中,AB=AC,D,E分别是AB,AC的中点,且CD=BE,△ADC与△AEB全等吗?请说明理由.
提升训练
11.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,点B,C,D在同一条直线上.试说明:BD=CE.
12.如图,点A,B,C,D在同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC.
试说明:∠ACE=∠DBF.

13.如图,已知AB=CD,BC=DA,E,F是AC上的两点,且AE=CF.试说明:BF=DE.
14.如图,点O是线段AB和线段CD的中点.试说明:
(1)△AOD≌△BOC;
(2)AD∥BC.
15.求证:等腰三角形的两底角相等.

已知:如图,在△ABC中,AB=AC.
试说明:∠B=∠C.
16.如图,△ABC,△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上,试说明:△CDA≌△CEB.
17.如图,四边形ABCD,四边形BEFG均为正方形,连接AG,CE.试说明:
(1)AG=CE;
(2)AG⊥CE.
18.如图,已知A,D,E三点共线,C,B,F三点共线,AB=CD,AD=CB,DE=BF,那么BE与DF之间有什么数量关系?请说明理由.
.如图,AD是△ABC中BC边上的中线.
试说明:AD< (AB+AC).

参考答案
1.【答案】B 
解:认真观察图形,只有B符合判定定理SAS.
2.【答案】D 
解:因为∠B=∠DEF,AB=DE,
所以添加∠A=∠D,利用ASA可得△ABC≌△DEF;
所以添加BC=EF,利用SAS可得△ABC≌△DEF;
所以添加∠ACB=∠F,利用AAS可得△ABC≌△DEF.故选D.
3.【答案】B 4.【答案】C 5.【答案】D
6.【答案】D 
解:因为AB=AC,∠A为公共角,A.如添加∠B=∠C,利用ASA即可说明△ABE≌△ACD;B.如添AD=AE,利用SAS即可说明△ABE≌△ACD;C.如添BD=CE,由等式的性质可得AD=AE,利用SAS即可说明△ABE≌△ACD;D.如添BE=CD,不能说明△ABE≌△ACD.故选D.
7.【答案】B 8.【答案】A
9.解:在△ABC和△BAD中,
所以△ABC≌△BAD(SAS).
所以AC=BD.
10.解:△ADC≌△AEB.理由如下:
因为AB=AC,D,E分别是AB,AC的中点,所以AD=AE.
在△ADC和△AEB中,

所以△ADC≌△AEB(SAS).
分析:在说明两个三角形全等时,经常会出现把“SSA”作为两个三角形全等的识别方法的情况.实际上,“SSA”不能作为两个三角形全等的识别条件.因为两边及一边的对角分别相等的两个三角形不一定全等.如本题中易出现根据条件BE=CD,AB=AC,∠A=∠A,利用“SSA”说明两个三角形全等的错误情况.
11.解:因为△ABC和△ADE都是等腰三角形,
所以AD=AE,AB=AC.
又因为∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,
所以∠DAB=∠EAC.
在△ADB和△AEC中,
所以△ADB≌△AEC(SAS).
所以BD=CE.
12.解:因为AB=DC,所以AB+BC=DC+CB.所以AC=DB.
因为EA⊥AD,FD⊥AD,所以∠A=∠D=90°.
在△EAC和△FDB中,
所以△EAC≌△FDB(SAS).
所以∠ACE=∠DBF.
分析:在说明线段或角相等的有关问题时,常常需要说明线段或角所在的两个三角形全等.
13.解:在△ABC和△CDA中,
所以△ABC≌△CDA(SSS).
所以∠1=∠2(全等三角形的对应角相等).
在△BCF和△DAE中,
所以△BCF≌△DAE(SAS).
所以BF=DE(全等三角形的对应边相等).
分析:本题综合考查了全等三角形的判定和性质,解答时要认真分析所给条件,选择合理、简单的方法进行解答.
14.解1)因为点O是线段AB和线段CD的中点,
所以AO=BO,CO=DO.
在△AOD和△BOC中,因为
所以△AOD≌△BOC(SAS).
(2)因为△AOD≌△BOC,所以∠A=∠B.
所以AD∥BC.
15.解:假设存在另一等腰三角形A'B'C'(A'B'=A'C')与△ABC完全重合.
因为AB=AC,
所以A'B'=A'C'=AB=AC.
即AB=A'C',AC=A'B'.
又因为BC=C'B',
所以△ABC≌△A'C'B'(SSS).
所以∠B=∠C'.
由两个三角形完全重合可知∠C=∠C'.
所以∠B=∠C.
16.解:因为△ABC,△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,
所以CE=CD,BC=AC,∠ACB-∠ACE=∠DCE-∠ACE,
即∠ECB=∠DCA,
在△CDA与△CEB中,
所以△CDA≌△CEB.
17.解1)因为四边形ABCD,四边形BEFG均为正方形,
所以AB=CB,∠ABC=∠GBE=90°,BG=BE.
所以∠ABG=∠CBE.
在△ABG和△CBE中,
所以△ABG≌△CBE(SAS).
所以AG=CE.
(2)如图,设AG与CE相交于点N.由(1)知△ABG≌△CBE,
所以∠BAG=∠BCE.
因为∠ABC=90°,
所以∠BAG+∠AMB=90°.
因为∠AMB=∠CMN,
所以∠BCE+∠CMN=90°.
所以∠CNM=90°.
所以AG⊥CE.

18.解:BE=DF.理由如下:
如图,连接BD.

在△ABD和△CDB中,
所以△ABD≌△CDB(SSS).
所以∠A=∠C.
因为AD=CB,DE=BF,
所以AD+DE=CB+BF.
所以AE=CF.
在△ABE和△CDF中,
所以△ABE≌△CDF(SAS).所以BE=DF.
分析:本题运用了构造法,通过连接BD,构造△ABD,△CDB,然后说明△ABD≌△CDB,从而得到∠A=∠C,为用“SAS”说明△ABE≌△CDF创造了条件.
19.解:如图,延长AD至点E,使DE=AD,连接BE.

因为AD是△ABC中BC边上的中线,所以CD=BD.
在△ACD与△EBD中,
所以△ACD≌△EBD(SAS).
所以AC=EB.
在△ABE中,AE<AB+BE,即2AD<AB+AC,所以AD< (AB+AC).
分析:本题通过运用倍长中线法构造全等三角形,利用全等三角形的性质,将三条线段转化到一个三角形中,然后利用三角形的三边关系来解决.
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 顶 踩
回复

使用道具 举报

沙发
 楼主| 发表于 2020-5-6 20:11:15 | 只看该作者
下载链接 4.3 第3课时 利用“边角边”判定三角形全等1.rar (209.72 KB, 下载次数: 481)
    打开微信,扫描下方二维码添加公众号“czwkzy”,关注初中微课资源公众号,   免费获取解压密码      如已关注,请进入“初中微课资源”公众号,在底部输入“密码”会自动回复最新下载密码。
      更多教学资源,免费、持续更新。



回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2024-11-27 00:42

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表