绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

查看: 3839|回复: 1
打印 上一主题 下一主题

北师大版初中数学九年级下册3.8 圆内接正多边形1教案及反思word下载

[复制链接]
跳转到指定楼层
楼主
发表于 2020-4-28 21:16:37 | 只看该作者 回帖奖励 |正序浏览 |阅读模式
           此套北师大版九年级数学下册教学设计及反思word下载绿色圃中小学教育网整理,供大家免费使用下载转载前请注明出处 部分图片、表格、公式、特殊符号无法显示,需要下载的老师、家长们可以到本帖子二楼(往下拉)下载word压缩文件附件使用!
        如有疑问,请联系网站底部工作人员,将第一时间为您解决问题!

文件预览:
3.8  圆内接正多边形


1.了解圆内接正多边形的有关概念;(重点)
2.理解并掌握圆内接正多边形的半径和边长、边心距、中心角之间的关系;(重点)
3.掌握圆内接正多边形的画法.(难点)
一、情境导入
这些美丽的图案,都是在日常生活中我们经常能看到的.你能从这些图案中找出正多边形来吗?

二、合作探究
探究点:圆内接正多边形
【类型一】 圆内接正多边形的相关计算
  已知正六边形的边心距为3,求正六边形的内角、外角、中心角、半径、边长、周长和面积.
解析:根据题意画出图形,可得△OBC是等边三角形,然后由三角函数的性质,求得OB的长,继而求得正六边形的周长和面积.
解:如图,连接OB,OC,过点O作OH⊥BC于H,∵六边形ABCDEF是正六边形,∴∠BOC=16×360°=60°,∴中心角是60°.∵OB=OC,∴△OBC是等边三角形,∴BC=OB=OC.∵OH=3,sin∠OBC=OHOB=32,∴OB=BC=2.∴内角为180°×(6-2)6 =120°,外角为60°,周长为2×6=12,S正六边形ABCDEF=6S△OBC=6×12×2× 3=63.
方法总结:圆内接正六边形是一个比较特殊的正多边形,它的半径等于边长,对于它的计算要熟练掌握.
变式训练:见《学练优》本课时练习“课堂达标训练”第11题
【类型二】 圆内接正多边形的画法
  如图,已知半径为R的⊙O,用多种工具、多种方法作出圆内接正三角形.

解析:度量法:用量角器量出圆心角是120度的角;尺规作图法:先将圆六等分,然后再每两份合并成一份,将圆三等分.
解:方法一:(1)用量角器画圆心角∠AOB=120°,∠BOC=120°;
(2)连接AB,BC,CA,则△ABC为圆内接正三角形.
方法二:(1)用量角器画圆心角∠BOC=120°;
(2)在⊙O上用圆规截取AC︵=AB︵;
(3)连接AC,BC,AB,则△ABC为圆内接正三角形.
方法三:(1)作直径AD;
(2)以D为圆心,以OA长为半径画弧,交⊙O于B,C;
(3)连接AB,BC,CA,则△ABC为圆内接正三角形.
方法四:(1)作直径AE;
(2)分别以A,E为圆心,OA长为半径画弧与⊙O分别交于点D,F,B,C;
(3)连接AB,BC,CA(或连接EF,ED,DF),则△ABC(或△EFD)为圆内接正三角形.

方法总结:解决正多边形的作图问题,通常可以使用的方法有两大类:度量法、尺规作图法;其中度量法可以画出任意的多边形,而尺规作图只能作出一些特殊的正多边形,如边数是3、4的整数倍的正多边形.
变式训练:见《学练优》本课时练习“课后巩固提升”第5题
【类型三】 正多边形外接圆与内切圆的综合


如图,已知正三角形的边长为2a.
(1)求它的内切圆与外接圆组成的圆环的面积;
(2)根据计算结果,要求圆环的面积,只需测量哪一条弦的大小就可算出圆环的面积?
(3)将条件中的“正三角形”改为“正方形”、“正六边形”你能得出怎样的结论?
(4)已知正n边形的边长为2a,请写出它的内切圆与外接圆组成的圆环的面积.
解析:正多边形的边心距、半径、边长的一半正好构成直角三角形,根据勾股定理就可以求解.
解:(1)设正三角形ABC的中心为O,BC切⊙O于点D,连接OB、OD,则OD⊥BC,BD=DC=a.则S圆环=π•OB2-π•OD2=πOB2-OD2=π•BD2=πa2;
(2)只需测出弦BC(或AC,AB)的长;
(3)结果一样,即S圆环=πa2;
(4)S圆环=πa2.
方法总结:正多边形的计算,一般是过中心作边的垂线,连接半径,把内切圆半径、外接圆半径、边心距,中心角之间的计算转化为解直角三角形.
变式训练:见《学练优》本课时练习“课后巩固提升”第4题
【类型四】 圆内接正多边形的实际运用
  如图①,有一个宝塔,它的地基边缘是周长为26m的正五边形ABCDE(如图②),点O为中心(下列各题结果精确到0.1m).
(1)求地基的中心到边缘的距离;
(2)已知塔的墙体宽为1m,现要在塔的底层中心建一圆形底座的塑像,并且留出最窄处为1.6m的观光通道,问塑像底座的半径最大是多少?

解析:(1)构造一个由正多边形的边心距、半边和半径组成的直角三角形.根据正五边形的性质得到半边所对的角是360°10=36°,再根据题意中的周长求得该正五边形的半边是26÷10=2.6,最后由该角的正切值进行求解;(2)根据(1)中的结论,塔的墙体宽为1m和最窄处为1.6m的观光通道,进行计算.
解:(1)作OM⊥AB于点M,连接OA、OB,则OM为边心距,∠AOB是中心角.由正五边形性质得∠AOB=360°÷5=72°,∴∠AOM=36°.∵AB=15×26=5.2,∴AM=2.6.在Rt△AMO中,边心距OM=AMtan36°=2.6tan36°≈3.6(m).所以,地基的中心到边缘的距离约为3.6m;
(2)3.6-1-1.6=1(m).
所以,塑像底座的半径最大约为1m.
方法总结:解决问题关键是将实际问题转化为数学问题来解答.熟悉正多边形各个元素的算法.
三、板书设计
圆内接正多边形
1.正多边形的有关概念
2.正多边形的画法
3.正多边形的有关计算

本节课新概念较多,对概念的教学要注意从“形”的角度去认识和辨析,但对概念的严格定义不能要求过高.在概念教学中,要重视运用启发式教学,让学生从“形”的特征获得对几何概念的直观认识,鼓励学生用自己的语言表述有关概念,再进一步准确理解有关概念的文字表述,促进学生主动学习.所以在教学的过程中应尽量使用多媒体教学手段.
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 顶 踩
回复

使用道具 举报

沙发
 楼主| 发表于 2020-4-28 21:18:35 | 只看该作者
下载链接 3.8 圆内接正多边形1.rar (859.4 KB, 下载次数: 408)
    打开微信,扫描下方二维码添加公众号“czwkzy”,关注初中微课资源公众号,   免费获取解压密码      如已关注,请进入“初中微课资源”公众号,在底部输入“密码”会自动回复最新下载密码。
      更多教学资源,免费、持续更新。



回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2024-11-29 10:13

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表