【考点】KD:全等三角形的判定与性质;LB:矩形的性质;T7:解直角三角形.菁优网版权所有
【分析】(1)根据矩形的性质得到∠A=∠D=90°,由垂直的定义得到∠FEC=90°,根据余角的性质得到∠AFE=∠DEC,根据全等三角形的判定和性质即可得到结论;
(2)由已知条件得到AE= DE,由AF=DE,根据三角函数的定义即可得到结论.
【解答】(1)证明:∵四边形ABCD是矩形,
∴∠A=∠D=90°,
∵EF⊥CE,
∴∠FEC=90°,
∴∠AFE+∠AEF=∠AEF+∠DEC=90°,
∴∠AFE=∠DEC,
在△AEF与△DCE中, ,
∴△AEF≌△DCE(AAS),
∴AF=DE;
(2)解:∵DE= AD,
∴AE= DE,
∵AF=DE,
∴tan∠AFE= = .
【点评】本题考查了矩形的性质,全等三角形的判定和性质,三角函数的定义,正确的识别图形是解题的关键.
22.(6分)为了创建文明城市,增强学生的环保意识.随机抽取8名学生,对他们的垃圾分类投放情况进行调查,这8名学生分别标记为A,B,C,D,E,F,G,H,其中“√”表示投放正确,“×”表示投放错误,统计情况如下表.
学生
垃圾类别 A B C D E F G H
厨余垃圾 √ √ √ √ √ √ √ √
可回收垃圾 √ × √ × × √ √ √
有害垃圾 × √ × √ √ × × √
其他垃圾 × √ √ × × √ √ √
(1)求8名学生中至少有三类垃圾投放正确的概率;
(2)为进一步了解垃圾分类投放情况,现从8名学生里“有害垃圾”投放错误的学生中随机抽取两人接受采访,试用标记的字母列举所有可能抽取的结果.
【考点】VA:统计表;X6:列表法与树状图法.菁优网版权所有
【分析】(1)直接利用概率公式求解可得;
(2)利用列表法可得所有等可能结果.
【解答】解:(1)8名学生中至少有三类垃圾投放正确的概率为 ;
(2)列表如下:
A C F G
A CA FA GA
C AC FC GC
F AF CF GF
G AG CG FG
【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
四、解答题(本共4道题,其中23、24题每题8分,25、28题每题10分,共38分)
23.(8分)如图在△ABC中,AB=BC,以AB为直径作⊙O交AC于点D,连接OD.
(1)求证:OD∥BC;
(2)过点D作⊙O的切线,交BC于点E,若∠A=30°,求 的值.