|
本套资源由绿色圃中小学教育网免费提供,文字版可以直接观看,如果需要下载此套新课标人教版七年级下册数学全册教案集文字版的附件,请直接拉到本帖子最后一页的最后一帖链接中下载DOC附件即可!如只是浏览参考一下该资源,则无需下载附件!
人教版七年级下学期全册教案
5.1相交线
[教学目标]
1. 通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力
2. 在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题
[教学重点与难点]
重点:邻补角与对顶角的概念.对顶角性质与应用
难点:理解对顶角相等的性质的探索
[教学设计]
一.创设情境 激发好奇 观察剪刀剪布的过程,引入两条相交直线所成的角
在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。
观察剪刀剪布的过程,引入两条相交直线所成的角。
学生观察、思考、回答问题
教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?
教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,
二.认识邻补角和对顶角,探索对顶角性质
1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配
共能组成几对角?根据不同的位置怎么将它们分类?
学生思考并在小组内交流,全班交流。
当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用
几何语言准确表达
;
有公共的顶点O,而且 的两边分别是 两边的反向延长线
2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?
(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)
3学生根据观察和度量完成下表:
两条直线相交 所形成的角 分类 位置关系 数量关系
教师提问:如果改变 的大小,会改变它与其它角的位置关系和数量关系吗?
4.概括形成邻补角、对顶角概念和对顶角的性质
三.初步应用
练习:
下列说法对不对
(1) 邻补角可以看成是平角被过它顶点的一条射线分成的两个角
(2) 邻补角是互补的两个角,互补的两个角是邻补角
(3) 对顶角相等,相等的两个角是对顶角
学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象
四.巩固运用例题:如图,直线a,b相交, ,求 的度数。
[巩固练习](教科书5页练习)已知,如图, ,求: 的度数
[小结]
邻补角、对顶角.
[作业]课本P9-1,2P10-7,8
[备选题]
一判断题:
如果两个角有公共顶点和一条公共过,而且这两个角互为补角,那么它们互为邻补角( )
两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补( )
二填空题
1如图,直线AB、CD、EF相交于点O, 的对顶角是 , 的邻补角是
若 : =2:3, ,则 =
2如图,直线AB、CD相交于点O
则
5.1.2 垂线
[教学目标]
1. 理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。
2. 掌握点到直线的距离的概念,并会度量点到直线的距离。
3. 掌握垂线的性质,并会利用所学知识进行简单的推理。
[教学重点与难点]
1.教学重点:垂线的定义及性质。
2.教学难点:垂线的画法。
[教学过程设计]
一. 复习提问:
1、 叙述邻补角及对顶角的定义。
2、 对顶角有怎样的性质。
二.新课:
引言:
前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。
(一)垂线的定义
当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
如图,直线AB、CD互相垂直,记作 ,垂足为O。
请同学举出日常生活中,两条直线互相垂直的实例。
注意:
1、 如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。
2、掌握如下的推理过程:(如上图)
反之,
(二)垂线的画法
探究:
1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?
2、经过直线l上一点A画l的垂线,这样的垂线能画出几条?
3、经过直线l外一点B画l的垂线,这样的垂线能画出几条?
画法:
让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。
注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。
(三)垂线的性质
经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:
性质1 过一点有且只有一条直线与已知直线垂直。
练习:教材第7页
探究:
|
|