|
沙发
楼主 |
发表于 2019-1-3 15:29:13
|
只看该作者
3.2 解一元一次方程(一)
——合并同类项与移项
第2课时 用移项的方法解一元一次方程
教学目标:
1.通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性.
2.掌握移项方法,学会解“ax+b=cx+d”类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想.
教学重点:建立方程解决实际问题,会解 “ax+b=cx+d”类型的一元一次方程.
教学难点:分析实际问题中的相等关系,列出方程.
教学过程:
一、提出问题
出示课本P88问题2:
把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?
二、分析问题
引导学生回顾列方程解决实际问题的基本思路.
学生讨论、分析:
1.设未知数:设这个班有x名学生.
2.找相等关系:这批书的总本数是一个定值,表示它的两个等式相等.
3.列方程:3x+20=4x-25 … (1)
设问1:怎样解这个方程?它与上节课遇到的方程有何不同?
学生讨论后发现:方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25).
设问2:怎样才能使它向x=a的形式转化呢?
学生思考、探索:为使方程的右边没有含x的项,等号两边同减去4x,为使方程的左边没有常数项,等号两边同减去20.
3x-4x=-25-20… (2)
设问3:以上变形依据是什么?
归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项.
设问4:以上解方程中“移项”起了什么作用?
学生讨论、回答,师生共同整理:
通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于“x=a”的形式.
三、课堂练习
1.学生练习课本P90练习第1题.
2.解下列方程:
(1)3x+5=4x+1; (2)9-3y=5y+5;
(3)3b+4=5b-6 ; (4)7-6x=-2x+3.
四、综合应用,巩固提高
1.讨论学习课本P90例4.
2.将一块长、宽、高分别为4厘米、2厘米、3厘米的长方体橡皮泥捏成一个底面半径为2厘米的圆柱,它的高是多少?(精确到0.1厘米)
3.课本P90练习第2题.
五、课时小结
1.今天你又学会了解方程的哪些方法?有哪些步骤?每一步的依据是什么?
2.现在你知道前面提到的古老的代数书中的“对消”与“还原”是什么意思吗?
3.今天讨论的问题中的相等关系又有何共同特点?
|
|