(一)教学比的意义。
1、教学同类量的比。
A、请同学们看大屏幕,(出示课件2),这是谁?
关于杨利伟,你们都知道些什么?
师:你们知道的真多!2003年10月15日,我国成功发射了第一艘载人飞船————“神州”五号,(出示课件3),杨利伟叔叔就是乘坐“神州”五号飞上太空的,实现了我们中华民族几千年的飞天梦想。
(出示课件4)这就是杨利伟叔叔在太空中向人们展示联合国旗和中华人民共和国国旗时的情景。杨叔叔能干吗?
(出示课件5)杨利伟叔叔展示的两面旗都是长15cm,宽10cm,长是宽的几倍? 宽是长的几分之几?怎样用算式表示?
(引导学生说出,教师板书:15÷10 10÷15)
B、师:这两个关系都是用什么方法来求的?(除法)
C、师:比较这两个数量之间的关系,除了除法,还有一种表示方法,即“比”。可以说成是:长和宽的比是15比10(师板书:15比10 ) ,宽和长的比是10比15。 (师板书:10比15 )
我们来看一看,长与宽的比,宽与长的比一样吗?为什么?说明什么?
师:两个数量进行比较一定要弄清谁和谁比。谁在前,谁在后,不能颠倒位置,否则比表示的具体意义就变了。比是有顺序的。
D、师:不论是长和宽的比还是宽和长的比,都是两个长度的比,相比的两个量是同类的量。
例如:我们班有男生22人,女生24人,男生和女生人数的比是几比几;女生和男生人数的比呢?
2、教学不同类量的比。
A、师(课件5出示):“神舟”五号进入运行轨道后,在距地350km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252km。飞船进入轨道后平均每分钟飞行多少千米?怎样用算式表示?( 生说师板书:42252÷90)
B、师:对于这种关系,我们也可以说:飞船所行路程和时间的比是42252比90。(师板书:42252比90)这里的42252千米与90小时是两个不同类的量。不同类的两个量相比可以得到一个新的量,如:路程∶时间 = 速度 总价∶数量 = 单价
3、归纳比的意义。
A、师:刚才的两个例子,都是通过两个数相除来表示两个数量之间的关系,它们都可以用比来表示,所以什么是比?聪明的你能说说吗?(学生试说,教师总结板书:两个数相除又叫做两个数的比。(揭示课题)这就是我们今天学习的比的意义(师板书课题)
B、学生读比的意义。
(二)教学比的读写法和比的各部分名称。
1、师:关于比,我们课本第44页还有很多知识,下面请同学们带着这些问题(出示课件6)自学,并概括相关知识点,看看谁最能干。
(1、几比几怎样写、怎样读? 2、比的各部分名称是什么?
3、怎样求比值? 4、比值可以怎样表示?)
2、学生代表汇报,师补充板书。(15∶10 10∶15 42252∶ 90)
师质疑:比号和冒号有区别吗?书写时应注意什么?
3、学生代表汇报,教师用(课件7)逐一出示:
“∶”是比号,读作“比”。比号前面的数,叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
15 ∶ 10 = 15 ÷ 10=
比值 = 比的前项 ÷ 比的后项
即时练习 : 3 ∶ 2 = 3 ÷ 2 = 或1.5
8 ∶ 1 = 8 ÷ 1 = 8
比值通常用分数表示,也可以用小数或整数表示。
大家想一想:比与比值有什么区别吗?
(三)教学比与除法、分数的关系。
1、(出示课件8)小组讨论:
比的前项、后项和比值分别相当于除法算式和分数中的什么?
A、小组代表汇报,完成上表。(课件出示)
B、师:如果用字母表示比与除法、分数这三者的内在关系,应该怎样表示?引导板书:
a ∶ b = a ÷ b =
C、根据分数与除法的关系,两个数的比也可以写成分数的形式。
例如:15∶ 10,可写成(师板书),仍读作“15比10”。
2、(出示课件9)(b≠0)想一想:比的后项可以是0吗?为什么?(比的后项不能是0。因为在除法算式中,除数不能为0,比的后项相当于除数,所以比的后项也不能为0。因为在分数中,分母不能为0,比的后项相当于分母,所以比的后项也不能为0。)师补充板书
3、师质疑:(出示课件10)可是,在比赛场上,我们常常用比分的形式来表示两个队的比赛结果,这里的比和我们这节课学习的比一样吗?这里的12∶ 0是什么意思?谁能说说看。
学生讨论回答后,教师订正时指出(课件出示):各类比赛中记录的比分,只表示某一队与另一队比赛各得的进球分数,不是表示两队所得分数的倍数关系,这与我们今天学习的比的意义不同,它只是借用了我们这节课学习的比的写法。