教学设计 一、教材分析:
(一)学习目标:
1.掌握三角形全等的“SAS”条件,能运用“SAS”证明简单的三角形全等问题.
2.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.
(二)学习重点和难点:
重点:三角形全等的条件.
难点:寻求三角形全等的条件.
二、自主学习:阅读P98—100页回答下列问题:
1、怎样的两个三角形是全等三角形?全等三角形的性质是什么?
2、“SAS”命题可以写成(结合右图,用字母填写)
如果:AB=_____,∠_____=∠_____ ,_____= _____ 那么:¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬__________________
3、总结:证明三角形全等的步骤,(与同学交流)
(4)分析说明:利用“证明两个三角形全等”来证明______________________________也可证明____________________________
练一练
1、已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.
2、已知:点A、F、E、C在同一条直线上, AF=CE,BE∥DF,BE=DF.
求证:△ABE≌△CDF.
三、 课内探究
活动一
1、讨论三角形全等的条件(动手画一画并回答下列问题)
(1).只给一个条件:一组对应边相等(或一组对应角相等),画出的两个三角形一定全等吗?
(2).给出两个条件画三角形,有____种情形。按下面给出的两个条件,画出的两个三角形一定全等吗?
①一组对应边相等和一组对应角相等
②两组对应边相等
③两组对应角相等
(3)、给出三个条件画三角形,有____种情形。
2、(1)自学课本P98页内容,完成下列作图
已知:△ABC
求作: ,使 , ,
活动二 知识点应用
1、如图,已知:AD∥BC,AD=CB,AF=CE.
求证:△AFD≌△CEB.
证明:∵AD∥BC,
∴∠A=∠___(两直线平行, 相等)
在△____和△_____中,
∴△_____≌△_____(______).
2、如图,已知点E、F在BC上,且BE=CF,AB=CD,∠B=∠C,证明:AF=DE
活动三 本节课小结(我的收获)
(1)知识方面:
(2)学习方法方面:
四、课后训练
1、如图,已知AB=AC,AD=AE,∠1=∠2.
求证:△ABD≌△ACE.
2、已知:点A、F、E、C在同一条直线上, AF=CE,
BE∥DF,BE=DF.
求证:AB∥CD
五、拓展延伸
1、如图:在△ABE和△ACF中,AB=AC, BF=CE.
求证:⑴△ABE≌△ACF
⑵AF=AE
2、△ABC和△DEF中,若AB=DE,BC=EF, ∠A=∠D,则△ABC和△DEF全等吗?
|