|
沙发
楼主 |
发表于 2015-6-11 00:13:07
|
只看该作者
二次函数 的性质
的符号
开口方向 顶点坐标 对称轴 性质
向上
X=h 时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .
向下
X=h 时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 .
5、抛物线 的三要素:开口方向、对称轴、顶点.
的符号决定抛物线的开口方向:当 时,开口向上;当 时,开口向下;
相等,抛物线的开口大小、形状相同.
对称轴:平行于 轴(或重合)的直线记作 .特别地, 轴记作直线 .
顶点坐标:
6、求抛物线的顶点、对称轴的方法
公式法: ,∴顶点是 ,对称轴是直线 .
配方法:运用配方的方法,将抛物线的解析式化为 的形式,得到顶点为( , ),对称轴是直线 .
运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.
用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.
7、用待定系数法求二次函数的解析式
一般式: .已知图像上三点或三对 、 的值,通常选择一般式.
顶点式: .已知图像的顶点或对称轴,通常选择顶点式.
交点式:已知图像与 轴的交点坐标 、 ,通常选用交点式: .
8、直线与抛物线的交点
轴与抛物线 得交点为(0, ).
与 轴平行的直线 与抛物线 有且只有一个交点( , ).
9、抛物线与 轴的交点
二次函数 的图像与 轴的两个交点的横坐标 、 ,是对应一元二次方程 的两个实数根.抛物线与 轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点 抛物线与 轴相交;
②有一个交点(顶点在 轴上) 抛物线与 轴相切;
③没有交点 抛物线与 轴相离.
10、一次函数与二次函数的交点
一次函数 的图像 与二次函数 的图像 的交点,由方程组 的解的数目来确定:①方程组有两组不同的解时 与 有两个交点; ②方程组只有一组解时 与 只有一个交点;③方程组无解时 与 没有交点.
11、抛物线与 轴两交点之间的距离
若抛物线 与 轴两交点为 ,由于 、 是方程 的两个根,故
12、二次函数图象的平移
平移步骤:
⑴ 将抛物线解析式转化成顶点式 ,确定其顶点坐标 ;
⑵ 保持抛物线 的形状不变,将其顶点平移到 处,具体平移方法如下:
★重难点:平移规律
在原有函数的基础上“ 值正右移,负左移; 值正上移,负下移”.
概括成八个字“左加右减,上加下减”.
13、实际问题与二次函数
在日常生活、生产和科研中,求使材料最省、时间最少、效率最高等问题,有些可归结为求二次函数的最大值或最小值。 先用配方法或公式法将一元二次函数变形,然后求最值。
★中考常考题型:
1、用二次函数求最值、销售的最大利润、图形的最大面积问题。
2、给出一条直线的解析式与二次函数的解析式求交点、判断有几个交点情况、判断交点的取值范围。
第二十三章 旋转
一、旋转 1、定义
把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质
(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
二、中心对称 1、定义
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定
如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形
把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
考点五、坐标系中对称点的特征 1、关于原点对称的点的特征
两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)
2、关于x轴对称的点的特征
两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)
3、关于y轴对称的点的特征
两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)
第二十四章 圆
一、圆的相关概念 1、圆的定义
在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、圆的几何表示:以点O为圆心的圆记作“⊙O”,读作“圆O”
二、弦、弧等与圆有关的定义(1)弦:连接圆上任意两点的线段叫做弦。(如图中的AB)
(2)直径 :经过圆心的弦叫做直径。(如途中的CD) 直径等于半径的2倍。
(3)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
(4)弧、优弧、劣弧 圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A,B为端点的弧记作“ ”,读作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)
三、垂径定理及其推论 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。 |
|