|
7#
楼主 |
发表于 2010-4-1 13:45:00
|
只看该作者
4成正比例的量
教学要求 :
1、使同学理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养同学用发展变化的观点来分析问题的能力。培养同学概括能力和分析判断能力。
教学重点:使同学理解正比例的意义
教学难点:引导同学通过观察、发现考虑两种相关联的量的变化规律.
教学过程:
1、 复习:
(1) 已知路程和时间,求速度?
(2) 已知总价和数量,求单价?
(3) 已知工作总量和工作时间,求工作效率?
2 新知:
( 1)教学例1
投影出示:一列火车1小时行驶90千米,2小时行驶180千米3小时行驶270千米,4小时行驶360千米 ,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米 6……
(1) 出示下表,填表
一列火车行驶的时间和路程
时间
路程
填表 考虑:再填表中你发现了什么?
点拨:时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量.(板书:两种相关联的量)
根据计算,你发现了什么?
指出:相对应的两个数的比的比值一样或固定不变,在数学上叫做一定
用式子表示他们的关系是:路程/时间=速度(一定)(板书)
(2) 教师小结:
同学们通过填表 交流,知道时间和路程是.两种相关联的量,路程随着时间的变化而变化.时间扩大,路程随着扩大;时间缩小,路程也随着缩小。即:路程/时间=速度(一定)
2 、教学例2
(1) 花布的米数和总价表
数量 1 2 3 4 5 6 7 ……
总价 8.2 16.4 24.6 32.8 41.0 49.2 57.4 ……
(2)观察图表,发现什么规律?
用式子表示它们的关系:总价/米数=单价(一定)
1 、笼统概括正比例的意义.
(1) 比较例1、例2,考虑并讨论:这两个例题有什么一起点?
(2) 两种相关联的量,一种量变化,另一种量也随着变化,假如这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。
(3) 看书,进一步理解正比例的意义。
(4) 假如用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?
X/y=k(一定)
(5) 根据正比例的意义以和表示正比例的式子想一想:构成正比例关系的两种量必需具备哪些条件?
3 教学例3
(1) 出示例3:每袋面粉的重量一定,面粉的总重量和袋数,是不是成正比例?
(2) 同学讨论解答
4 反馈练习:
第13页做一做,并订正.
五、课堂练习
1、 基本练习 第17页第1题订正时,必需让同学说明为什么?
2、综合练习
(1)判断 第17页2题 说明理由
(2)举例说明正比例关系
六 板书设计
成正比例的量
例1 例2
90/1=90
180/2=90
270/3=90 8.2/1=8.2
…… 16.4/2=8.2
路程/时间=速度(一定) 24.6/3=8.2……
|
|