|
【论文摘要】数学概念是反映数量关系与空间形式本质属性的思维形式,是数学思维的细胞。各种数学方法,解决各种数学问题,都必须运用数学概念。可以说,数学概念是数学基础知识的基石,是基础之基础。正确而深刻地理解数学概念,是掌握数学基础知识和形成基本技能的前提。夸美纽斯在《大教学论》中指出“如果先不教明概念,便是教得不好”。匡继昌也指出:“学生如果不能正确地理解数学中的各种概念,就不能掌握各种法则、定理、公式,从而也就不能正确地进行计算和论证。因此,讲清概念,使学生正确地理解概念,对于提高数学教学质量具有重要的意义。
【关键词】 小学数学 概念课 教学 有效性
教师数学概念教学的质量,直接影响着学生学习数学的质量。学生的逻辑思维能力、空间想象能力、运算作图能力、灵活解答问题能力以及探索求异能力等等无一不是以清晰、确定的概念为基础的。这些能力的高低与相应概念明确、理解的深度、广度有着密切的联系。实践证明,加强概念教学是切实提高小学数学教学质量的有效策略。那么在当前积极开展课堂教学有效性研究的背景下,应该如何有效开展小学数学高年级概念课的教学呢?
一、 创设有效生活情境,引入概念
情境创设是一节课的眼睛,是可以顾盼生辉的。而数学概念是抽象枯燥的,因此教学中一定要把概念放在一个丰富的,典型的,自然的现实生活情境中引入,这样才能站在学生的心理需求上。在每节数学课中,都应极力捕捉生活中的数学问题,从学生的生活实际引入概念。
例如:四年级下册 【用字母表示数】
师:“同学们,你们喜欢玩扑克牌吗?”
教师出示四张扑克牌,10、J、Q、K,问:“这四张牌中谁最大呢?为什么?”生:“K最大,因为K表示13。”
师:“那Q表示多少?J呢?”
在学生回答后,教师总结:“也就是说这几个字母都表示一个数。今天我们就学习用字母表示数。”
在这个环节中把学生喜欢并熟知的扑克牌与数学联系了起来,既结合了学生的生活实际从鲜活的生活情境引入新课,又激发学生的学习兴趣,让学生全心投入课堂,激发了学习热情,学生兴趣十分浓厚。
又如:【轴对称图形】
在本课开始充分利用学生爱玩、好胜的心理特征,以游戏的形式直接导课:“你们愿意和老师比赛折纸飞机吗?”从而调动全班的积极性。接着用自己折的左右翼不对称的飞机和学生折的飞机比赛,让学生大胆猜测谁的飞机会飞得又高又稳,为什么?这时学生凭着生活经验脱口而出:“老师一定会输,因为老师折的飞机左右翼不对称。”
在生动具体的情境中理解并引出了“对称”的概念。这样的情境非常具有亲切感,让学生很快就融入了游戏情境中,自觉主动地去认识事物。
二、 大量感知,深入理解概念
概念的形成是一个积累渐进的过程,因此在概念的教学中要遵循从具体到抽象,从感性认识到理性认识的原则。小学生的思维特点是从具体形象思维逐步向抽象思维过渡的。这种过渡在很大程度上还是依靠丰富的感性材料,从各种类型的感知材料中概括抽象出数学概念。数学概念不是靠老师讲出来的,而是靠学生自己去体验、感悟的。
如:五年级下册【百分数的认识】
在学生认识了百分数以后,初步感知百分数的意义和作用。然后通过大量的资料,如“姚明加盟NBA联赛的第一年,投篮命中率为49.8%;日本的森林覆盖率高达65%,我国的森林覆盖率仅14%;期中考试六一班合格率99.6%,优秀率72.2%;洋快餐的营业额是中式快餐营业额的220%”等,通过这些让学生在现实情境中深入理解百分数的现实意义。
在学生已经积累了大量的感性材料后,让学生用自己的话概括百分数的意义,水到渠成。
三、 通过对比、练习引导学生理解概念
著名教育家乌申斯基说过:“比较是一切理解和思维的基础,我们正是通过比较才了解世界上的一切的。”在概念教学中,会有很多相似或相近的概念非常容易混淆。在这种情况下,通过比较找出概念间的相同点与不同点,弄清其区别与联系。这样不仅可以加深概念的理解,又可以强化新知。
如“数位”与“位数”, “时间”与“时刻”,“化简比”与“求比值”等等很多的易混概念都可以运用对比辨析的方法来加以区别。
对比练习最能体现数学知识的联系与区别,培养学生的知识迁移往往体现在对比练习中,比如,出示12:8,让学生进行化简比和求比值的计算,把化简比和求比值放在一起让学生解答,一般不会出现错误,学生很容易知道3:2和2/3的区别,假如单单地把12:8化简比或求值,学生或多或少地出现错误,把化简比也当作求比值来做。再比如,比是分数比或小数比,错误率则更高。通过较多的对比练习,学生自然地发现其中还有很多规律可寻,(化简过的比写成分数形式则就是我们要求的比值)等。
四、 在质疑问难中深化概念理解
概念的有些重要特征,如果仅靠教师的强调或表面的揭示,不一定能收到好的教学效果,而如果留有一定的空间让学生质疑,在解决问题中深化理解反而会使概念更加完善。“思缘于疑”,人的思维活动都是从疑问开始的,没有疑问就没有思考。因此,在概念的形成中教师有意识地让学生质疑,可促进学生对概念的理解。
如:四年级下册 【商不变的规律】教学片断
1、观察发现:学生在通过对一组算式的观察对比后发现被除数与除数同时乘相同的数,结果不变。
2、引导学生归纳:谁能用一句完整的话概括一下我们刚才发现的规律,汇报小结后出示:被除数和除数同时乘相同的数,商不变。
3、质疑:被除数和除数同时乘0,商还不变吗?
4、引导学生再次归纳:被除数和除数同时除以相同的数(零除外),商不变。
5、试一试,验证规律。
现实生活中这样的例子有吗?
生举例验证商不变规律。
五、 将概念逐步构建成网络,使其系统化
学生总是从具体的孤立的概念开始学起,即使在教学时注意了概念之间的某些联系,也往往是为了学习的新概念的需要。因此,在小学生的头脑中,概念常常是孤立的、互不联系的。我们在教学时就一定要引导学生把学过的概念放在一起,寻找概念之间纵向或横向的联系,组成概念系统,使教材中的数学知识转化成为学生头脑中的认知结构,这种系统化了的认知结构,不仅有利于巩固对概念的理解,也促进了知识的迁移,发展了学生的数学能力。
如:六年级上册 【比的认识】
在教学比的认识之后,让学生通过比、分数、与除法之间的联系与区别进行梳理,沟通了三者之间的内在联系。为今后教学分数应用题时算法的多样化奠定了基础。将比、分数、除法进行对比,遵循知识的内在联系,帮助引导学生建立良好的认知结构。不仅使学生体会到了概念之间的相互联系,更是一个把知识网络构建完整的过程。在学习具体的孤立的概念时,不会很深刻地认识到这些概念的本质,只有从整个知识体系中才有可能更深刻地理解它们,知道它们在整个体系中的地位和作用。
六、 概念教学中要重视情感体验
新课标中明确指出:“要让学生参与特定的数学活动,在亲身体验中学习数学”。在概念课的教学中我们也要重视学生的情感体验。从生活实际中引入概念时,可以使学生体验数学知识的生活化;在大量的操作活动中探究知识时,可以使学生体验到概念的形成过程;在师生互动交流时,可以使学生体验到成功的乐趣;在把概念应用到生活中时,可以使学生体验到数学的应用价值。
如:五年级上册【分数的意义】
在课快结束时,师提出了想了解一下同学们的学习情绪的问题。让学生运用百分数描述自己的情绪,愉快占几分之几?紧张占几分之几?遗憾占几分之几?这样既关注了学生的情感体验,又检查了学生对本节课知识的掌握程度。
数学概念是客观世界中数量关系和空间形式的本质属性在人脑中的反映。所有的数学知识无一不是建立在一系列数学概念的基础上的。计算、几何初步知识、代数初步知识、以及运用数学知识去解决简单实际问题的能力,都是以数学概念的掌握为前提和保证的,只有有效开展概念教学,才能使学生在获取数学知识的同时,进一步培养各种数学能力,发展学生的思维。
|
|